
R O B E R T M O R R I S , Edit:or

A LISP Garbage-Collector for
Virtual-Memory Computer
Systems

ROBERT ~:~. FENICHEL AND JEROME C. YOCHELSON
Massachusetts Institute of Technology,
Cambridge, Massachusetts

In this paper a garbage-collection algorithm for list-processing
systems which operate within very large virtual memo, ies is
described. The object of the algorithm is more the compaction
of active storage than the discovery of free storage. Because
free storage is never really exhausted, the decision to garbage
collect is not easily made; therefore, various criteria of this
decision are discussed.

KEY WORDS AND PHRASES,
list-processing, storage-allocatlon
CR CATEGORIES: 4.19, 4.49

LISP: garbage-collector, virtual memory,

General Remarks

Users of list processing are familiar with garbage-col-
lectors of the sort first described by McCarthy [1]. Systems
using collectors of this sort run freely until space is nearly
exhausted. Then, all execution stops while a marking
routine marks every free-storage cell which is reachable
by program. Finally, a gathering routine scans the free-
storage area, collecting the unmarked cells onto a free-
storage list, and unmarking the marked cells.

Garbage-collection has always been necessary because
the computer's supply of addressable space has always
been much less than the total space used during execution
of a list-processing program. Garbage-collection makes it
possible to reuse the system's limited supply of addressable
space.

This work was supported in part by Project MAC, an MIT re-
search program sponsored by the Advanced Research Project
Agency, US Department of Defense, under Office of Naval Re-
search Contract No. Nonr-4102 (01). Reproduction in whole or in
part is permitted for any purpose of the United States Govern-
ment.

With the coming of virtual-memory systems [2, 3], the
problem of limited addressable space is hardly present. In
MULTICS, for example, a LISP system might be made
to operate with a potential free-storage list of billions of
LISP cells.

Such a system may run almost endlessly with no need
for garbage-collection. As operation proceeds, however,
performance degrades. This is because the active-list-
storage becomes spread over a larger and larger region of
virtual storage, and it becomes increasingly likely that a
given reference to this virtual memory will require a
reference to secondary storage.

Bobrow and Murphy [4] faced a substantially similar
problem, but the virtual memory of their system was not
yet so large as to be effectively infinite. Many of their
strategies for pointer enrichment and for data segmenta-
tion are appropriate to an infinite memory system, but
their garbage-collector is not.

What is needed is a collector whose task is not so much
the discovery of free storage as the compaction of active
storage. I t is especially clear that a routine will not do if its
gathering phase must scan all potential storage.

The procedure is shown in detail below. Briefly, it
operates by dividing the potential storage space into two
semispaces. Only one semispace is used for free storage
(only one semispaee is current) at a time. The collection
procedure simply copies the active storage into a compact
portion of the noncurrent semispace. Then, this second
semispace is made current.

Initiating Collection

There is no simple condition under which to initiate a
garbage-collection of the sort described here. By hypothe-
sis, one can not wait until storage is nearly exhausted. The
primary reason to initiate collection must be a low ob-
served ratio of processor cycles to elapsed time.

Because these collections are never necessary, only in-
creasingly desirable, other factors may influence the de-
cision to initiate collection. In on-line systems, for example,
it might be reasonable to favor collection at times when the
system would otherwise be blocked, waiting for input.
In any type of system, collection should be favored when
the pushdown list is short, so that the actual work of col-
lection is likely to be minimal. Any strategy of collection
should best be tuned to the statistical behavior of the
combined environment presented by users and host
system.

V o l u m e 12 / Number 11 / November, 1969 C o m m u n i c a t i o n s o f t h e ACM 611

The Algorithm

This garbage-collector, because it copies lists structures,
shares the chief problem of list-storage copying programs.
That is, that if the most obvious strategy 1 is used, then
copies of certain lists will be nonisomorphic to the originals.
For example, an n-word structure like the one shown in
Figure 1 will be expanded to a (2 ~ -- 1)-word tree. 2

I ~ eoo

FIG. 1

Because the active storage will be thrown away as soon
as the garbage-collector has copied it, the garbage-col-
lector, unlike most copying programs, is privileged to
modify the structure being copied. The collector therefore
replaces any copied structure by a pointer to the copy.
Subsequent discovery of this altered original will prevent
recopying.

The top-level structure of the garbage-collector must be
a loop which successively examines each independent,
program accessible pointer into list storage. At one ex-
treme, there may be only one such pointer--that to the
top of the pushdown list. On the other hand, there may be
various other pointers (e.g. to an object list, from special
temporary storage areas, to list-literals used by compiled
routines). The top-level loop is only hinted at below. What
is shown in detail is the subroutine COLLECT.

C O L L E C T takes as its a r g u m e n t a po in te r to a list
s t ruc ture in the cur ren t semispace, and i t r e tu rns as its
va lue a po in te r to the copy in the other semispace. Whi le
the version of C O L L E C T shown here is recursive, a
(complex) nonrecurs ive C O L L E C T could be cons t ruc ted
wi th the a lgor i thm credited to Deutsch , Schorr, and Wai t e
by Knuth [6].

Several funct ions are t aken as pr imi t ives :

atom[a], carla], cdr[a], Usual LISP functions. The
rplaca[a;b],rplacd[a;b], pointer a is taken to refer to
cons[b; c] the last semispace set by flip-

semispace.

i That is copy[x] =[atom[x] --~ x; T --~ cons[copy[car[x]]; copy
[cdr[x]]]].

Structures of this sort have been called BLAM lists by Edwards
[5], presumably onomatopoeically from the problem which they
present to copying-programs.

flipsemispace[]

flipconsspace[]

collectatom[a]

nrplaea[a;b],nrplacd[a;b]

Flips interpretation of pointers
to the other semispace.

Alters operation of cons so that
list cells are generated in the
other semispace. The nth list
cell taken there will simply be
the nth cell in the semispace.
There is, in other words, no ex-
plicit free-storage list.

Like COLLECT, but for atoms.
Probably uses COLLECT in-
ternally on property lists, de-
pending upon implementation
of atoms (see [4]).

Like rplaca and rplacd, but the
pointer a is taken to refer to the
other semispace.

Here is the garbage-collector:

garbagecolleetor[] = prog[[p];
flipconsspaee[];
(for each root pointer p) p : = collect[p] ;
flipsemispace[]]

collect[p] = [
atom[p] ~ eolleetatom[p];
eq[ear[p]; ALREADYCOPIED] --~ cdr[p];
T --~ prog[[a;d;q];

a := car[p];
d := cdr[p];
q := cons[NIL; NIL];
rplaca[p; ALREADYCOPIED];
rplacd[p ;q];
nrplacd[q; collect[d]];
nrplaca[q; collect[all;
return[q]]]

RECEIVED DECEMBER, 1968; REVISED MAY, 1969

REFERENCES

1. McCARTHY, JOHN. Recursive functions of symbolic ex-
pressions and their computation by Machine-I. Comm. ACM
8, 4 (Apr. 1960), 184--195.

2. CORBATC, F. J., AND VYSSOTSKY, V. A. Introduction and
overview of the MULTICS system. Proc. AFIPS 1965 Fall
Joint Comput. Conf., Vol. 27, Pt. 1, Spartan Books, New
York, pp. 185-196.

3. COMFORT, WEBB W. A computing system design for user serv-
ice. Proe. AFIPS 1965 Fall Joint Comput. Conf., Vol. 27, Pt.
2, Thompson Book Co., Washington, D.C., pp. 619-626.

4. BOBROW, DANIEL G., AND MURPHY, DANIEL L. Structure of a
LISP systemnsingtwo-level storage. Comm. ACMIO, 3 (Mar.
1967), 155-159.

5. EDWARDS, DANIEL J. Secondary storage in LISP. Paper,
First Internat. LISP Conf., 1964.

6. KNUTH, DONALD E. The Art of Computer Programming, I.
Addison-Wesley, Reading, Mass., 1968, p. 417.

7. YOCHELSON, JEROME C. Multics LISP. Unpublished, MIT,
Cambridge, Mass., 1967.

CORRIGENDUM (COMMUNICATIONS SYSTEMS): For the interest of those who file or republish abstracts
and others who may have been puzzled, attention is directed to an unfortunate error in the paper "A
Modular Computer Sharing System" by Herbert B. Baskin, Elsa B. Horowitz, Robert D. Tennison,
and Larry E. Rittenhouse [ACM Comm. 12, 10 (Oct. 1969), 555-559]. The phrase in the fifth line of the
abstract should read "a memory/processor pair."

612 Communica t ions of the ACM Volume 12 / Number 11 / November, I969

