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A method for returning registers to the free list is an essen- 
tial part of any list processing system. In this paper, past 
solutions of the recovery problem are reviewed and com- 
pared. A new algorithm is presented which offers significant 
advantages of speed and storage utilization. The routine for 
implementing this algorithm can be written in the list language 
with which it is to be used, thus insuring a degree of machine 
independence. Finally, the application of the algorithm to a 
number of different list structures appearing in the literature is 
indicated. 

1. I n t r o d u c t i o n  

One of the most important  features of a list language is 
its ability to allocate storage dynamically during the run- 
ning of the object program. This is accomplished by means 
of a list of available space (or free list) which contains those 
registers not being used. Initially, the free list contains all 
storage not occupied by the program [1, 2, 11], and regis- 
ters are detached from it and formed into list structures 
as the program is executed. The  execution of the program 
must usually be suspended when the free list is exhausted, 
and the problem arises of reclaiming those parts of the list 
structure which are no longer needed (if any such exist). In  
this paper a statement of the difficulties involved is fol- 
lowed by a brief review of the solutions which have been 
proposed. A new, machine-independent procedure and the 
results obtained using the 7094 version of this procedure 
are presented. Finally, the application and modification of 
this routine for a variety of list structures is discussed. 
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2. S t a t e m e n t  o f  t h e  P r o b l e m  and R e v i e w  o f  P a s t  
S o l u t i o n s  

The major problem which arises when attempting to re- 
claim a part  of a list structure is that  of knowing which 
part  is no longer needed. This has received considerable 
attention in the literature [1-8] and three solutions have 
been proposed. The first, by Newell, Simon and Shaw [1], 
places the responsibility on the programmer. Their lan- 
guage (IPL-V) includes instructions which cause lists and 
list structures to be erased, thereby returning their registers 
to the free list. This approach is unattract ive because it 
requires the programmer to keep track of the status of lists, 
sublists, etc. For example, par t  of a list may be shared with 
several other lists and might still be needed, while the re- 
mainder could be erased. 

A second solution for systems which use shared sublists, 
originally due to Gerlernter et al. [3], extended by Collins 
[4], and used by Weizenbaum [5, 6], requires keeping a 
count of the references made to a list and salvaging the 
registers when the count reaches zero. In a one-way list 
structure it is impossible to locate the head of a list when a 
reference is made to some register along the list. Thus the 
part  which starts from the referenced register must be 
treated as a new list, and a new reference counter must be 
set up. The proliferation of reference counters, and 
the large amount of bookkeeping involved, makes this 
method extremely cumbersome. In a two-way list [6] it is 
ahvays possible to locate the head, and thus it is not neces- 
sary to set up a new reference counter. However, the head 
of the list must be found and the reference count increased 
by 1. Besides being time-consuming, this may prevent re- 
turning part  of a list to the free list. For example, in Figure 
1 there is no way of discarding the top part  of list B if list 
A still needs the bot tom part  of B. Thus in practice this 
part  of B has to be treated as a separate list and a new 
reference counter is needed [5, 6]. The  reference counter 
method breaks down completely in the case of a circular 
list (i.e., one in which the list is a sublist of itself). In this 
situation the reference counter cannot be decreased to zero, 
even though the entire list may become inaccessible [13]. 

The third solution, which appears to be the most attrac- 
tive, was proposed by McCar thy  [2] and is considered in 
detail below. In  this method, no reference counters are 
kept and registers are not returned to the free list until the 
latter has been exhausted. Then a procedure known as 
"garbage collection" is initiated, which traces the entire 
list structure, marking those registers which are attached 
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to some list. Registers no longer needed will not be attached 
to any list and will thus remain unmarked. When all lists 
have been traced, a routine is entered to form all unmarked 
registers into a new free list and erase the marks in all 
others (in ease the garbage collector has to be used again 
later). 

Several difficulties arise in using and implementing a 
garbage collection procedure. 

(A) The basic problem is the tracing of the lists. In  
general the lists will be branched and all branches must be 
traced. Several methods have been suggested, but  all re- 
quire either a significant amount of additional storage (for 
remembering the branch points encountered) or the re- 
tracing of large portions of the list structure many times. 

(B) A second problem arises when the data  consists of 
signed numbers which are stored in a whole word. In 
McCarthy 's  method of garbage collection, the sign of each 
register that  is attached to a list is set to minus, while un- 
attached registers remain positive. The sign of an attached 
register is then reset to plus after the new free list has been 
formed. Clearly, this procedure, unless modified, will result 
in reversing the sign of any negative numbers. The modifi- 
cation proposed by McCarthy is to reserve a block of stor- 
age that  is to be used exclusively for whole-word data  items 
(full-word space). A second part  of the store is then set aside 
for a bit table, to be used during garbage collection to re- 
cord which of the full words are still part  of active list 
structures. This modification is not completely satisfactory 
since (1) it violates the dynamic storage allocation princi- 
ple of list processing languages, and (2) the storage used 
by the bit table and the additional part  of the garbage 
collection program which utilizes it  must be taken away 
from the free list. 

(C) Besides single full-word data items, multiple-word 
list elements have been proposed, and the number of 
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FiG. 1. Sharing a sublist in a two-way list structure 

words making up such an element can be allowed to vary 
from element to element. These variable-length elements 
were proposed by Comfort [9], who also gave a solution to 
the problem which is created of maintaining a generalized 
free list. In such a free list, an item of arbitrary length may 
be taken off, and to insure that  large elements are available 
it is important  to t ry  to reconstruct the largest possible 
blocks of consecutive free registers when returning regis- 
ters to the free list. The problem of using a garbage collee- 
tion procedure to achieve this is discussed below. 

3. A T e c h n i q u e  for Garbage  C o l l e c t i o n  in  a O n e -  
W a y  Lis t  

Solution of the basic problem (see Section 2A) of garbage 
collection requires a routine that  is economical both in its 
use of temporary storage and in the number of times it 
traverses the list structure. In addition, of course, it must 
be able to trace any possible list. A routine which uses a 
limited amount  of temporary storage for remembering the 
location of branch points cannot trace a list which has too 
many such points, and a reeursive routine requires a push- 
down stack of indeterminate length on which to store re- 
turn addresses. Moreover, if a routine must traverse a par- 
tieular list an indeterminate number of times it will fail 
when it encounters a circular list. In connection with an 
implementation of the Wisp language [7, S] for the IBM 
7094, a method has been developed which uses two index 
registers and the accumulator for temporary storage and 
which traverses the list structure twice. This routine is 
capable of tracing any list structure (including circu- 
lar lists) which has any number of branch points. 

In the Wisp system as programmed for the 7094, the 
address field (TAIL) of a list element contains the loca- 
tion of the next register on the list and is called a pointer. 
The  decrement field (HEAD) contains either an atom [2] 
or the location of a branch of the list. A Wise list is shown 
in Figure 2(a). The prefix and tag fields are unused and 
hence are available for use by the garbage collector. The 
algorithm employed here is to move down a list ignoring 
sublists and reversing the pointers as one goes. This re- 
versal of pointers in a one-way list structure with shared 
sublists permits a return to be made to the head of a list 
during garbage collection. During this first pass, the sign 
of each register is made negative. The end of the first pass 
is reached when either (1) the end of the list is reached, or 
(2) a register on the list is encountered whose sign is minus 
(indicating that  this part  of the list is a sublist of some 
other list that  has already been traversed). The  result of 
applying this forward scan to the list D shown in Figure 
2(a) is given in Figure 2(b). 

During the forward scan of the list, the contents of the 
HEAD of each list register are ignored. The reverse scan, 
which is entered when the forward scan is terminated, 
moves back up the list restoring the original pointers. ID 
addition, it examines the HEAD of each register, checking 
to see if it contains a reference to a sublist. (In the 7094 
implementation of WisP, any number larger than 2200 is a 
pointer to a sublist, while any number less than this is an 
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4. The  R o u t i n e  a nd  its  E f f i c i e n c y  

The routine itself is flowcharted in Figure 3. For con- 
venience in drawing the flowchart, the list elements are 
assumed to be numbered sequentially. Thus, list element 
I + 1 follows list element I (i.e., list element I + 1 is pointed 
to by the TAIL  of list element I). The  routine uses two in- 
dex registers and the accumulator for temporary storage, 
though in general any three storage locations could be used. 
One contains the address of the previous list element ex- 
amined, the second the address of the element currently 
being examined and the third the address of the next ele- 
ment on the list. This is necessary for the reversal of the 
pointers during the forward scan and their restoration 
during the reverse scan. 

In  order to evaluate the speed of the routine, a Wise 
program was written which created five complete binary 
trees of depth 12. The remaining registers were discarded 
and the garbage collector called. Thus it was forced to 
trace a list structure containing over 20,000 registers, half 
of which were branch points. The elapsed time, according 
to the system clock, was 1.85 seconds. This list structure 
seems far more complex than any which would be en- 
countered in practice, and therefore a normal garbage col- 
lection should take far less time. The  space occupied is also 
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nominal--68 words for the routine itself, in addition to the 
two index registers and accumulator. 

For purposes of comparison, a trace routine proposed by 
Wilkes was coded for the 7094. I t  required only two tempo- 
rary storage locations, and occupied 35 words of memory. 
This routine traversed a path from the head of a list to each 
terminal register separately. Thus much of the list was 
scanned many times, and the program would fail by enter- 
ing a loop when at tempting to trace a circular list. When 
run under the above conditions (5 binary trees of depth 12) 
the routine required 2.75 seconds for a complete trace. 

As a final comparison, a routine which stored branch 
points was coded and run using the same list structure. The 
program occupied 34 words, and an additional 48 words 
were allotted as a storage area for the branch points. Any 
given part  of the list structure was only traversed once, so 
that  this routine could trace any list for which the number 
of branch points it was required to store was less than 49. 
Only .448 seconds were required to complete the trace of 
the test s tructure.  
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On the basis of these results, it seems that  the best gar- 
bage collection procedure is to use the last routine with as 
much temporary storage as possible, and when this storage 
is full to trace the remainder of the current branch using 
the algorithm given in Section 4. In this way one is able to 
realize the most efficient collection for the amount of tem- 
porary memory available, and yet there is no possibility 
of failure for any structure. If, however, no temporary 
storage area can be excluded from the free list or it is in- 
convenient to code two garbage collectors, then the al- 
gorithm of the previous section offers a reasonably efficient 
fail-safe solution. 

5. S y m b o l i c  Garbage Col lector  

The transfer of a programming system from one machine 
to another can be more easily achieved if the compiler and 
its utility routines are written in a higher level (nonma- 
chine) language [7, 12]. For  this reason it is desirable to 
program the garbage collection routine for a list processing 
language in the language itself. The routine, if it is to work 
in all cases, must use a fixed amount of temporary storage. 
A recursive routine does not satisfy this condition because 
it requires a pushdown stack of indeterminate length on 
which to store return addresses. We have seen that  the 
Wisp garbage collection is divided into two phases: tha t  
in which the list structure is traced and marked, and that  
in which the new free list is formed from the unmarked 
registers. The second phase is severely machine-dependent, 
but  the first can easily be written in a list language. The 
trace algorithm presented in Section 3 requires the addition 
of several elementary operations to those normally found 
in Wise. These were: 

(1) set an element minus, 
(2) set a branch point flag, 
(3) delete a branch point flag, 
(4) test the sign, 
(5) test the branch point flag, and 
(6) sequence from one list to the next. 

Once these functions have been defined in machine lan- 
guage, the Wisp compiler can translate the entire routine 
(which contains 35 WzsP statements). 

6. Garbage  Col lec t ion  in  a Variable I t e m  Lis t  

Various list processing systems have been proposed in 
which each list element consists of a number of consecutive 
registers [5, 6, 9, 10]. Tha t  is, if each element is to consist of 
n registers and the element is stored at memory location M, 
then the element is composed of the n consecutive registers 
M ,  M - t - l ,  . . .  , M + n - - 1 .  In some systems n is fixed for 
all list elements (n = 2 is a common choice), while in 
others n may vary  from one list element to the next. 

If  n, n > 1, is fixed, the problem of garbage collection is 
similar to the case considered above where n = 1. The 
scan of Figure 3 is used to mark the first register of each 
list element minus. Whenever a negative register is found 
in the sequential scan of the store that  follows, it and the 
next n - -1  sequential registers are not returned to the free 
list. If  a positive register is found, it and the next n -  1 are 

returned. To see this, consider first the way in which the 
free list is originally formed. If all of the unused storage 
constitutes a consecutive block [11], then the free list can be 
constructed so that  a new free list element occurs at every 
n th  memory address from the start  of the block. Thus it 
suffices to look at the every n th  location in the free storage 
space; a positive register and the succeeding n - 1  registers 
can be returned to the free list. 

Consider next, garbage collection when n can vary from 
one list element to the next. In this case, the HEAD of the 
first register does not ordinarily contain data, but  rather 
contains the number n of registers that  make up the ele- 
ment. I t  is necessary then to distinguish between the fol- 
lowing items that  may occupy the HEAD:  (1) the number 
n, as above, of consecutive registers, for n > 1, and (2) the 
data  item itself (which may be a pointer to a sublist) if 
n = l .  

This information can be stored in one bit of the prefix 
field of a 7094 word, leaving one bit for the garbage collec- 
tor's branch point flag. The scan shown in Figure 3 can 
again be employed to mark the first registers of those ele- 
ments attached to lists tha t  have not been discarded. Next, 
instead of merely returning all non-negative registers to the 
free list, the sequential scan of storage, which is flow- 
charted in Figure 4, must be used. This scan does not re- 
turn  a negative register to the free l i s t~nor  any of the next 
n - -1  consecutive storage registers that  make up the rest 
of the list element. Furthermore,  this scan collects the 
largest block of consecutive discarded registers and forms 
them into a single free list element. 
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7. G a r b a g e  C o l l e c t i o n  for O t h e r  List  S t r u c t u r e s  

As mentioned above, some list languages permit the 
HEAD of a list element to contain the address of a full 
word of data. Since a data word may be a negative number, 
this presents difficulties during garbage collection. To avoid 
this difficulty, variable length list elements should be used 
to achieve full-word storage; this case then reduces to tha t  
of Section 6. 

In a threaded list system [10], sublists cannot be shared, 
and garbage collection is particularly simple since the last 
element always points to the head of a list or sublist. Dur- 
ing the forward scan it is not necessary to reverse the 
pointers, nor is a reverse scan needed since both only serve 
to effect a return to the head of a (sub)fist. A flowchart of 
the first part  of a garbage collection procedure for this 
type of system is given in Figure 5. 

The routine can also be employed, with a slight modifi- 
cation, to collect garbage in a two-way SLIP list [5, 6]. In 
such a list the first list element, called a Header, has two 

pointers.  One points to the next list element while the 
second points to the last element. The last element points 
back to the Header. Garbage collection can be achieved by 
modifying Figure 5 in the following manner. 

(1) When a list is first encountered, it is checked to see 
if it has already been traversed. 

(2) When a branch is descended, the Header address 
field which points to the last element is changed to point 
back to the branch element. (This enables a return to be 
made to the main list). 

(3) In  traversing the list, the address of the previous 
list element marked is saved, When the pointer from the 
last element back to the Header has been followed, this 
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saved address is used to restore the above Header field 
while the branch element address stored in that  field is 
used to resume scanning and marking the list on which the 
branch element appeared. 

8. C o n c l u s i o n  

In this paper, various procedures for garbage collection 
have been presented. These procedures are useful for the 
list processing systems and structures previously reported 
in the literature. An algorithm which will trace any one- 
way list has been presented, and its efficiency discussed. In  
view of this routine's storage requirements and speed it 
seems that  the method of garbage collection is far more 
efficient than the use of reference counters in one-way lists. 
Garbage collection in other types of list structures appears 
to be implemented by even simpler procedures. 

By a slight extension of the elementary functions avail- 
able to a list processing language, the garbage collection 
procedure may be described within the language in a non- 
recursive way, thus facilitating its transfer from one ma- 
chine to another. On the basis of these results, the use of 
garbage collection for reclaiming registers should always 
be considered when implementing a list processing system. 
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