
M. D. Mc lLROY, Editor

An Efficient Machine-Independent
Procedure for Garbage Collection
in Various List Structures

H. SCHORR
I B M Corp., Menlo Parle, California
AND
W. M. WAITE
University of Colorado,* Boulder, Colorado

A method for returning registers to the free list is an essen-
tial part of any list processing system. In this paper, past
solutions of the recovery problem are reviewed and com-
pared. A new algorithm is presented which offers significant
advantages of speed and storage utilization. The routine for
implementing this algorithm can be written in the list language
with which it is to be used, thus insuring a degree of machine
independence. Finally, the application of the algorithm to a
number of different list structures appearing in the literature is
indicated.

1. I n t r o d u c t i o n

One of the most important features of a list language is
its ability to allocate storage dynamically during the run-
ning of the object program. This is accomplished by means
of a list of available space (or free list) which contains those
registers not being used. Initially, the free list contains all
storage not occupied by the program [1, 2, 11], and regis-
ters are detached from it and formed into list structures
as the program is executed. The execution of the program
must usually be suspended when the free list is exhausted,
and the problem arises of reclaiming those parts of the list
structure which are no longer needed (if any such exist). In
this paper a statement of the difficulties involved is fol-
lowed by a brief review of the solutions which have been
proposed. A new, machine-independent procedure and the
results obtained using the 7094 version of this procedure
are presented. Finally, the application and modification of
this routine for a variety of list structures is discussed.

* Department of Electrical Engineering

2. S t a t e m e n t o f t h e P r o b l e m and R e v i e w o f P a s t
S o l u t i o n s

The major problem which arises when attempting to re-
claim a part of a list structure is that of knowing which
part is no longer needed. This has received considerable
attention in the literature [1-8] and three solutions have
been proposed. The first, by Newell, Simon and Shaw [1],
places the responsibility on the programmer. Their lan-
guage (IPL-V) includes instructions which cause lists and
list structures to be erased, thereby returning their registers
to the free list. This approach is unattract ive because it
requires the programmer to keep track of the status of lists,
sublists, etc. For example, par t of a list may be shared with
several other lists and might still be needed, while the re-
mainder could be erased.

A second solution for systems which use shared sublists,
originally due to Gerlernter et al. [3], extended by Collins
[4], and used by Weizenbaum [5, 6], requires keeping a
count of the references made to a list and salvaging the
registers when the count reaches zero. In a one-way list
structure it is impossible to locate the head of a list when a
reference is made to some register along the list. Thus the
part which starts from the referenced register must be
treated as a new list, and a new reference counter must be
set up. The proliferation of reference counters, and
the large amount of bookkeeping involved, makes this
method extremely cumbersome. In a two-way list [6] it is
ahvays possible to locate the head, and thus it is not neces-
sary to set up a new reference counter. However, the head
of the list must be found and the reference count increased
by 1. Besides being time-consuming, this may prevent re-
turning part of a list to the free list. For example, in Figure
1 there is no way of discarding the top part of list B if list
A still needs the bot tom part of B. Thus in practice this
part of B has to be treated as a separate list and a new
reference counter is needed [5, 6]. The reference counter
method breaks down completely in the case of a circular
list (i.e., one in which the list is a sublist of itself). In this
situation the reference counter cannot be decreased to zero,
even though the entire list may become inaccessible [13].

The third solution, which appears to be the most attrac-
tive, was proposed by McCar thy [2] and is considered in
detail below. In this method, no reference counters are
kept and registers are not returned to the free list until the
latter has been exhausted. Then a procedure known as
"garbage collection" is initiated, which traces the entire
list structure, marking those registers which are attached

Volume 10 / Number 8 / August, 1967 Communications of the ACM 501

to some list. Registers no longer needed will not be attached
to any list and will thus remain unmarked. When all lists
have been traced, a routine is entered to form all unmarked
registers into a new free list and erase the marks in all
others (in ease the garbage collector has to be used again
later).

Several difficulties arise in using and implementing a
garbage collection procedure.

(A) The basic problem is the tracing of the lists. In
general the lists will be branched and all branches must be
traced. Several methods have been suggested, but all re-
quire either a significant amount of additional storage (for
remembering the branch points encountered) or the re-
tracing of large portions of the list structure many times.

(B) A second problem arises when the data consists of
signed numbers which are stored in a whole word. In
McCarthy 's method of garbage collection, the sign of each
register that is attached to a list is set to minus, while un-
attached registers remain positive. The sign of an attached
register is then reset to plus after the new free list has been
formed. Clearly, this procedure, unless modified, will result
in reversing the sign of any negative numbers. The modifi-
cation proposed by McCarthy is to reserve a block of stor-
age that is to be used exclusively for whole-word data items
(full-word space). A second part of the store is then set aside
for a bit table, to be used during garbage collection to re-
cord which of the full words are still part of active list
structures. This modification is not completely satisfactory
since (1) it violates the dynamic storage allocation princi-
ple of list processing languages, and (2) the storage used
by the bit table and the additional part of the garbage
collection program which utilizes it must be taken away
from the free list.

(C) Besides single full-word data items, multiple-word
list elements have been proposed, and the number of

B

i

i t

1 I

I i

FiG. 1. Sharing a sublist in a two-way list structure

words making up such an element can be allowed to vary
from element to element. These variable-length elements
were proposed by Comfort [9], who also gave a solution to
the problem which is created of maintaining a generalized
free list. In such a free list, an item of arbitrary length may
be taken off, and to insure that large elements are available
it is important to t ry to reconstruct the largest possible
blocks of consecutive free registers when returning regis-
ters to the free list. The problem of using a garbage collee-
tion procedure to achieve this is discussed below.

3. A T e c h n i q u e for Garbage C o l l e c t i o n in a O n e -
W a y Lis t

Solution of the basic problem (see Section 2A) of garbage
collection requires a routine that is economical both in its
use of temporary storage and in the number of times it
traverses the list structure. In addition, of course, it must
be able to trace any possible list. A routine which uses a
limited amount of temporary storage for remembering the
location of branch points cannot trace a list which has too
many such points, and a reeursive routine requires a push-
down stack of indeterminate length on which to store re-
turn addresses. Moreover, if a routine must traverse a par-
tieular list an indeterminate number of times it will fail
when it encounters a circular list. In connection with an
implementation of the Wisp language [7, S] for the IBM
7094, a method has been developed which uses two index
registers and the accumulator for temporary storage and
which traverses the list structure twice. This routine is
capable of tracing any list structure (including circu-
lar lists) which has any number of branch points.

In the Wisp system as programmed for the 7094, the
address field (TAIL) of a list element contains the loca-
tion of the next register on the list and is called a pointer.
The decrement field (HEAD) contains either an atom [2]
or the location of a branch of the list. A Wise list is shown
in Figure 2(a). The prefix and tag fields are unused and
hence are available for use by the garbage collector. The
algorithm employed here is to move down a list ignoring
sublists and reversing the pointers as one goes. This re-
versal of pointers in a one-way list structure with shared
sublists permits a return to be made to the head of a list
during garbage collection. During this first pass, the sign
of each register is made negative. The end of the first pass
is reached when either (1) the end of the list is reached, or
(2) a register on the list is encountered whose sign is minus
(indicating that this part of the list is a sublist of some
other list that has already been traversed). The result of
applying this forward scan to the list D shown in Figure
2(a) is given in Figure 2(b).

During the forward scan of the list, the contents of the
HEAD of each list register are ignored. The reverse scan,
which is entered when the forward scan is terminated,
moves back up the list restoring the original pointers. ID
addition, it examines the HEAD of each register, checking
to see if it contains a reference to a sublist. (In the 7094
implementation of WisP, any number larger than 2200 is a
pointer to a sublist, while any number less than this is an

502 Communications of the ACM Volume 10 / Number 8 / August, 1967

4. The R o u t i n e a nd its E f f i c i e n c y

The routine itself is flowcharted in Figure 3. For con-
venience in drawing the flowchart, the list elements are
assumed to be numbered sequentially. Thus, list element
I + 1 follows list element I (i.e., list element I + 1 is pointed
to by the TAIL of list element I). The routine uses two in-
dex registers and the accumulator for temporary storage,
though in general any three storage locations could be used.
One contains the address of the previous list element ex-
amined, the second the address of the element currently
being examined and the third the address of the next ele-
ment on the list. This is necessary for the reversal of the
pointers during the forward scan and their restoration
during the reverse scan.

In order to evaluate the speed of the routine, a Wise
program was written which created five complete binary
trees of depth 12. The remaining registers were discarded
and the garbage collector called. Thus it was forced to
trace a list structure containing over 20,000 registers, half
of which were branch points. The elapsed time, according
to the system clock, was 1.85 seconds. This list structure
seems far more complex than any which would be en-
countered in practice, and therefore a normal garbage col-
lection should take far less time. The space occupied is also

Q

F

ENTRY

i

SET I TO I
i

FIRST CELL
OF L ST

lNO
I MAKE'T I

MINUS

1
I REVERSE POINTER

OF CELLI

YES

YES

W :l

nominal--68 words for the routine itself, in addition to the
two index registers and accumulator.

For purposes of comparison, a trace routine proposed by
Wilkes was coded for the 7094. I t required only two tempo-
rary storage locations, and occupied 35 words of memory.
This routine traversed a path from the head of a list to each
terminal register separately. Thus much of the list was
scanned many times, and the program would fail by enter-
ing a loop when at tempting to trace a circular list. When
run under the above conditions (5 binary trees of depth 12)
the routine required 2.75 seconds for a complete trace.

As a final comparison, a routine which stored branch
points was coded and run using the same list structure. The
program occupied 34 words, and an additional 48 words
were allotted as a storage area for the branch points. Any
given part of the list structure was only traversed once, so
that this routine could trace any list for which the number
of branch points it was required to store was less than 49.
Only .448 seconds were required to complete the trace of
the test s tructure.

EXIT

YES

RESTORE POINTER

OF CELL I

L I - ~ I

TO ~~~iYES
REVERSE POINTER I
IN CAR OF I
SET BRANCH
PO NT FLAG

1
SET 2: TO
FIRST CELL
OF BRANCH

NO

(
FIG. 3. T r a c e a l g o r i t h m f o r a o n e - w a y l i s t . F o r w a r d s c a n ; r e v e r s e s c a n

RESTORE POINTER
IN CAR OFI.
CLEAR BRANCH
POINT FLAG.

504 Communications of the ACM Volume 10 / Number 8 / August, 1967

On the basis of these results, it seems that the best gar-
bage collection procedure is to use the last routine with as
much temporary storage as possible, and when this storage
is full to trace the remainder of the current branch using
the algorithm given in Section 4. In this way one is able to
realize the most efficient collection for the amount of tem-
porary memory available, and yet there is no possibility
of failure for any structure. If, however, no temporary
storage area can be excluded from the free list or it is in-
convenient to code two garbage collectors, then the al-
gorithm of the previous section offers a reasonably efficient
fail-safe solution.

5. S y m b o l i c Garbage Col lector

The transfer of a programming system from one machine
to another can be more easily achieved if the compiler and
its utility routines are written in a higher level (nonma-
chine) language [7, 12]. For this reason it is desirable to
program the garbage collection routine for a list processing
language in the language itself. The routine, if it is to work
in all cases, must use a fixed amount of temporary storage.
A recursive routine does not satisfy this condition because
it requires a pushdown stack of indeterminate length on
which to store return addresses. We have seen that the
Wisp garbage collection is divided into two phases: tha t
in which the list structure is traced and marked, and that
in which the new free list is formed from the unmarked
registers. The second phase is severely machine-dependent,
but the first can easily be written in a list language. The
trace algorithm presented in Section 3 requires the addition
of several elementary operations to those normally found
in Wise. These were:

(1) set an element minus,
(2) set a branch point flag,
(3) delete a branch point flag,
(4) test the sign,
(5) test the branch point flag, and
(6) sequence from one list to the next.

Once these functions have been defined in machine lan-
guage, the Wisp compiler can translate the entire routine
(which contains 35 WzsP statements).

6. Garbage Col lec t ion in a Variable I t e m Lis t

Various list processing systems have been proposed in
which each list element consists of a number of consecutive
registers [5, 6, 9, 10]. Tha t is, if each element is to consist of
n registers and the element is stored at memory location M,
then the element is composed of the n consecutive registers
M , M - t - l , . . . , M + n - - 1 . In some systems n is fixed for
all list elements (n = 2 is a common choice), while in
others n may vary from one list element to the next.

If n, n > 1, is fixed, the problem of garbage collection is
similar to the case considered above where n = 1. The
scan of Figure 3 is used to mark the first register of each
list element minus. Whenever a negative register is found
in the sequential scan of the store that follows, it and the
next n - -1 sequential registers are not returned to the free
list. If a positive register is found, it and the next n - 1 are

returned. To see this, consider first the way in which the
free list is originally formed. If all of the unused storage
constitutes a consecutive block [11], then the free list can be
constructed so that a new free list element occurs at every
n th memory address from the start of the block. Thus it
suffices to look at the every n th location in the free storage
space; a positive register and the succeeding n - 1 registers
can be returned to the free list.

Consider next, garbage collection when n can vary from
one list element to the next. In this case, the HEAD of the
first register does not ordinarily contain data, but rather
contains the number n of registers that make up the ele-
ment. I t is necessary then to distinguish between the fol-
lowing items that may occupy the HEAD: (1) the number
n, as above, of consecutive registers, for n > 1, and (2) the
data item itself (which may be a pointer to a sublist) if
n = l .

This information can be stored in one bit of the prefix
field of a 7094 word, leaving one bit for the garbage collec-
tor's branch point flag. The scan shown in Figure 3 can
again be employed to mark the first registers of those ele-
ments attached to lists tha t have not been discarded. Next,
instead of merely returning all non-negative registers to the
free list, the sequential scan of storage, which is flow-
charted in Figure 4, must be used. This scan does not re-
turn a negative register to the free l i s t~nor any of the next
n - -1 consecutive storage registers that make up the rest
of the list element. Furthermore, this scan collects the
largest block of consecutive discarded registers and forms
them into a single free list element.

ENTRY

SET I TO THE
BEGINNING OF THE

AREA O ~COUNT
LIST STORAGE

YES B MAI

Q

MAKE IT

I ADD CELL Z ANU
THE NEXT ~-I
CELLS TO THE
CURRENT FREE
LIST EiEMENT

COUNT +~-.m,..
COUNT

PLACE C O U N T I N T O ~ _ ~
THE COUNT FIELD NO
OF THE CURRENT TO ZERO
FREE LIST
ELEMENT

1 I YES

EXIT EXiT

(

_ _ ~ C O U N

YES

NO

IPL.ACE CUUNTINTO[
THE COUNT FIELD
OF THE CURRENT
FREE LIST
ELEMENT

WE R
yES THE END

:ACHE ~jgE

FzG. 4. Routine to reclaim variable-length items

Volume 10 / Number 8 / August, 1967 Communications of the ACM 505

7. G a r b a g e C o l l e c t i o n for O t h e r List S t r u c t u r e s

As mentioned above, some list languages permit the
HEAD of a list element to contain the address of a full
word of data. Since a data word may be a negative number,
this presents difficulties during garbage collection. To avoid
this difficulty, variable length list elements should be used
to achieve full-word storage; this case then reduces to tha t
of Section 6.

In a threaded list system [10], sublists cannot be shared,
and garbage collection is particularly simple since the last
element always points to the head of a list or sublist. Dur-
ing the forward scan it is not necessary to reverse the
pointers, nor is a reverse scan needed since both only serve
to effect a return to the head of a (sub)fist. A flowchart of
the first part of a garbage collection procedure for this
type of system is given in Figure 5.

The routine can also be employed, with a slight modifi-
cation, to collect garbage in a two-way SLIP list [5, 6]. In
such a list the first list element, called a Header, has two

pointers. One points to the next list element while the
second points to the last element. The last element points
back to the Header. Garbage collection can be achieved by
modifying Figure 5 in the following manner.

(1) When a list is first encountered, it is checked to see
if it has already been traversed.

(2) When a branch is descended, the Header address
field which points to the last element is changed to point
back to the branch element. (This enables a return to be
made to the main list).

(3) In traversing the list, the address of the previous
list element marked is saved, When the pointer from the
last element back to the Header has been followed, this

ENTRY I
SET I TO THE

FIRST
ELEMENT

'E

YES

NO

NO OF THiS ;RANCH Jii

RES~: TO I

BRANCH POINT

FIG. 5.

SET I TO THE

OF THE BRANCH
FIRST ELEMENT

"~ ELEMENT

EXIT

A scan for threaded lists

saved address is used to restore the above Header field
while the branch element address stored in that field is
used to resume scanning and marking the list on which the
branch element appeared.

8. C o n c l u s i o n

In this paper, various procedures for garbage collection
have been presented. These procedures are useful for the
list processing systems and structures previously reported
in the literature. An algorithm which will trace any one-
way list has been presented, and its efficiency discussed. In
view of this routine's storage requirements and speed it
seems that the method of garbage collection is far more
efficient than the use of reference counters in one-way lists.
Garbage collection in other types of list structures appears
to be implemented by even simpler procedures.

By a slight extension of the elementary functions avail-
able to a list processing language, the garbage collection
procedure may be described within the language in a non-
recursive way, thus facilitating its transfer from one ma-
chine to another. On the basis of these results, the use of
garbage collection for reclaiming registers should always
be considered when implementing a list processing system.

Acknowledgment. The authors gratefully acknowledge
the cooperation of Professor M. V. Wilkes and his col-
leagues at the Cambridge University Mathematical Labo-
ra tory in transferring the Wrap system to the IBM 7094.
This project was made possible by an allotment of time
from the Columbia University Computer Center.

RECEIVED FEBRUARY, 1965; REVISED MAY, 1967

REFERENCES

1. NEWELL, A. (ED.) Information Processing Language--W
Manual, 2nd ed. Prentice Hall, Englewood N. J., 1964.

2. McCARTHY, J. Recursive functions of symbolic expressions
and their computation by machine, part I. Comm. A C M 3
(April, 1960), 184.

3. GERLERNTEa, II., ET AL. A FORTRAN-compiled list-process-
ing language. J. A C M 7 (April 1960), 87.

4. COLLINS, G.E. A method for overlapping and erasure of lists.
Comm. A C M 8 (Dec. 1960), 655.

5. WEIZENBAUM, J. Knotted list structures. Comm. A C M 5
(Mar. 1962), 161.

6. WEIZENBAUM, J. Symmetric list processor. Comm. A C M 6
(Sept. 1963), 524.

7. WILKES, M.V. An experiment with a self-compiling compiler
for a simple list-processing language. Annual Review in
Automatic Programming, Vol. 4. Pergamon Press, N.Y.
1964, pp. 1-48.

8. WILKES, M. V. Lists and why they are useful. Proc. ACM
19th Nat. Conf., August 1964, ACM Publ. P-64, F1-1.

9. COMFORT, W.T. Multiword list items. Comm. A C M 7 (June
1964), 357.

10. EVANS, A., PERLIS, A. J., AND VAN ZOEREN, It. Use of threaded
lists in constructing a combined ALGOL and machine-like
assembly processor. Comm. A C M 4 (Jan. 1961), 36.

11. WAITE, W., AND SCrmRR, H. A note on the formation of a free
list. Comm. A C M 8 (Aug. 1964), 478.

12. I-IALSTEAD, M. It. MachineJndependent Computer Program-
ming. Spartan Books, Washington 1). C., 1962.

13. McBETH, J. M. On the reference counter method. Comm.
A C M 6 (Sept. 1963), 575.

506 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / Number 8 / August , 1967

