
Operat ing R.S. Gaines
Systems Editor

Buddy Systems
James L. Peterson
The University of Texas at Austin
Theodore A. Norman
Brigham Young University

Two algorithms are presented for implementing
any of a class of buddy systems for dynamic storage
allocation. Each buddy system corresponds to a set of
recurrence relations which relate the block sizes
provided to each other. Analyses of the internal
fragmentation of the binary buddy system, the Fibon-
acci buddy system, and the weighted buddy system
are given. Comparative simulation results are also
presented for internal, external, and total fragmenta-
tion.

Key Words and Phrases: dynamic storage alloca-
tion, buddy system, fragmentation, Fibonacci buddy
system, weighted buddy system

CR Categories: 3.89, 4.32, 4.39

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

This research was supported, in part, by the National Science
Foundation under Grant Number MCS75-16425. Authors' ad-
dresses: J.L. Peterson, Department of Computer Sciences, The Uni-
versity of Texas at Austin, Austin TX 78712; T.A. Norman, Depart-
ment of Computer Science, Brigham Young University, Provo, UT
84601.

421

1. Introduction

Two dynamic storage allocation algorithms derived
f rom the buddy system have recently been proposed.
Knowlton [5] and Knuth [6] described the original
buddy system. This memory management scheme allo-
cates blocks whose sizes are powers of 2. (In this paper ,
we call this system the binary buddy system to distin-
guish it f rom the other buddy systems considered.)
Hirschberg [4], taking Knuth 's suggestion [6, problem
2.5.31] has designed a Fibonacci buddy system with
block sizes which are Fibonacci numbers. Shen and
Peterson [12] have described an algorithm for a
weighted buddy system which provides blocks whose
sizes are 2 k and 3 . 2 k.

These three buddy systems are similar in the overall
design of the algorithm, with the major differences
being in the sizes of the memory blocks provided and
the consequent address calculation for locating the
buddy of a released block. The address calculation for
the binary and weighted buddy systems is straightfor-
ward, but the original procedure for the Fibonacci
buddy system was either limited to a small, fixed num-
ber of block sizes or a t ime consuming computat ion [4].
A recent note by Cranston and Thomas [1] has re-
moved this problem and made the address calculation
for the Fibonacci buddy system comparable with the
address calculation for the binary or weighted buddy
systems.

Another important variat ion among these three
buddy systems is in memory utilization. Buddy systems
suffer f rom both internal and external fragmentat ion.
Internal fragmentation is the result of allocating mem-
ory only in predefined block sizes. A request for a
block of memory which is not one of these specified
block sizes must be satisfied by allocating the next
larger block size, with a resulting loss in available
memory . External fragmentation results from breaking
available memory into blocks which can be recombined
only if they are buddies. Thus a request for memory
may have to be rejected because no single block is large
enough, although the total amount of available mem-
ory (in smaller blocks) may be sufficient to satisfy the
request many times over.

The amount of internal and external fragmentat ion
in a buddy system depends upon the distribution of
requests for memory which must be satisfied and the
block sizes provided. For a particular distribution, one
buddy system may have lower fragmentat ion than the
other systems, while the situation may be reversed for
another distribution. Since it is generally not easy to
change the memory distribution to match the allocation
strategy, it would be useful to have available a class of
dynamic storage allocation algorithms. For a particular
problem, an algorithm could be selected f rom this class
to minimize fragmentat ion and hence maximize mem-
ory utilization. Hirschberg [4] has suggested that such a
class of algorithms could be defined to allocate block

Communications June 1977
of Volume 20
the ACM Number 6

Fig. 1. The block at the address of the buddy of the block at P is
available, but the buddy of the block at P (at Q) is not available.
Squares (O) indicate available blocks; circles indicate blocks reserved
by the user (O) or blocks split into buddies (©).

s

J

sizes which satisfy the following recur rence relat ion:

Li = Li-1 + Li_k, k > 0.

For each value of k , a new buddy system is def ined.
(k = 1 is the b inary buddy system; k = 2 is the
Fibonacci buddy system.) The weighted buddy system
does not satisfy the above recur rence re la t ion , how-
ever, so this class appears to be too restrictive. In
general , a buddy system can be based upon any se-
quence of n u m b e r s which satisfy a set of n recur rence
relat ions with the form,

Li >-- Li-1 + tt~ti), i = 1 , n , Lo = O. (1)

where fl is any func t ion over the posit ive integers with

/3(0 < i.
In Sect ion 2, we presen t an a lgor i thm for the re-

quest and release procedures which can be used to
imp lemen t any buddy system whose blocks sizes satisfy
the set of recur rence re la t ions (1). In Sect ion 3, we
discuss an even more genera l class of buddy systems
and their i m p l e m e n t a t i o n . Sect ion 4 presents some
analytic results on the expected in te rna l f r agmen ta t ion
for a un i fo rm dis t r ibut ion of requests , while Sections 5
and 6 invest igate both in te rna l and externa l f ragmenta-
t ion for several buddy systems by means of s imula t ion .
Section 7 summar izes and presents some conclus ions
concern ing the advantages and disadvantages of the
buddy systems for dynamic storage al locat ion.

2. Generalized Buddy Algorithm

Let L~, L2 Ln be the set of block sizes
provided by the buddy system such that these block
sizes satisfy the set of n recur rence re la t ions (1) for a
func t ion /3 with LI < L2 < • • • < Ln. For a block size
L~, we call i its size index. The genera l ized buddy
system will split a block of size L~ into two blocks of size
Li-1 and L~ti~.

The ma jo r data s t ructure for the general ized buddy
system is its available space list. The available space list
is an n -vec to r which is indexed by the size index of a
block. The i th e l emen t of the avai lable space list is a

422

record with a H E A D and T A l L field po in t ing to the
front and rear of a doubly l inked list of all avai lable
blocks of size Li. O the r fields may be presen t in the
available space list e lements (such as a field which
records the n u m b e r of avai lable blocks of size L 0 . In

par t icular , Li and /3(i) may be s tored as fields of an
e l emen t of the available space list. This data s t ruc ture ,
or any of its fields, may be i m p l e m e n t e d as separa te
parallel n -vec tors ra ther than as a vector of records if
necessary for efficient accessing.

The general ized buddy a lgor i thm can now be
stated. For a reques t for a b lock of size index i , the
request p rocedure is:

Q1. Search up the available space list from the ith entry for the
smallest available block (of size index j at location P) such that
j -> i. If no block of sufficient size is available, memory overflow
has occurred, and the appropriate action must be taken. If such
a block exists, remove it from the available space list, and
continue to step Q2.

Q2. While j > i, split the block at location P of size index j into two
buddies: (1) a left buddy at location P of size index/3(j) and (2)
a right buddy at location P + L~o ~ of size index j - 1. Reset P
and j to specify the smaller of the two buddies which is large
enough to satisfy the request, and attach the other to the
available space list. (i.e. if/_< fl(j) then (P,j) ~- (P, fl(j)) else
(P, j) <-- (P + L~,, j - 1).)

Q3. When j = i, allocate the block at location P.

For a release of a block at locat ion ~ of size index i,
the release p rocedure is:

L1. Setj <--i.
L2. While the buddy of the block at location P of size index j is

available,
(a) Remove the buddy from its available space list.
(b) Recombine the block at location P of size index j and its

buddY. Reset P andj to specify the block which results from
this recombination. (i.e. if the buddy of (P, j) is (Q, 1), then
(P,j) ~ (min (P, Q), 1 + max (j, 1).)

L3. When the block at location P, of size index j, cannot be recom-
bined with its buddy (because the buddy is not available), attach
the block at location P to the available space list for blocks of
size index j.

The de t e r mi na t i on of the avai labi l i ty of the buddy
of a block is the central compu ta t i on of a buddy system.
It involves first calculat ing the address of the buddy and
then de t e rmin ing that the block at that address is (1)
available and (2) the desired buddy . Figure 1 i l lustrates
this p rob lem.

To aid in the computa t ion of the availabil i ty of the
buddy of a block, we define three fields which are
stored in each block in the buddy system:

(1) A TAG field, a Boolean value which records the available (TAG
= 0) or allocated (TAG = 1) status of the block.

(2) A TYPE field, a two bit value (ab) which specifies by its first bit
(a) whether this block is a left (a = 0) or right (a = 1) buddy.
The second bit (b) records the first (ifa = 0) or second (ifa = 1)
bit of the TYPE field of the parent block of this block. This
allows the TYPE field of the parent block to be redefined when
this block and its buddy are recombined. (The definition of this
field is due to Cranston and Thomas [1].)

(3) An INDEX field, specifying the size index of the block. Ifn block
sizes are provided by the buddy system, then [log2n] bits are
needed for this field.

Communications June 1977
of Volume 20
the ACM Number 6

On most machines, for many buddy systems, these
fields can be packed into the first word of the block.

Using these fields, we can now define the computa-
tion of the address, Q, of the buddy of a block at
location P with size index j , as

Q = P + L~, if T Y P E (P) = Ob,

= P - L~o+l), if T Y P E (P) = lb .

The block at Q is the buddy of the block at P only if
the buddy of P has not been split into subblocks. If P is
a left buddy (T Y P E (P) = Ob), then the block at Q is the
buddy of P if (and only if) the b lock at Q is a right
buddy (T Y P E (Q) = lb) . All subblocks of Q which are
at location Q are left buddies. If P is a right buddy
(T Y P E (P) = lb) , then the block at Q is the buddy of P
if and only if the size index field of Q, I N D E X (Q) , is
equal to /3(./ + 1), where j is the value of the I N D E X
field of the block at location P. Tile size index of the
parent of the block at location P is] + 1 and/3(j + 1)
is the size index of the buddy of the block at location
P.

This completes the description of the generalized
buddy system algorithm. For special cases of the /3
function, more specific and more efficient algorithms
can be defined (such as in [6] for the binary buddy
system), but the algorithm just described will work for
any/3 function. The Appendix lists a P A S C A L version
of the request and release procedures, where size[i] is
Li and subbuddy [i] is /3(0.

The algorithm described was designed to allocate
memory from a large initially available block of size M,
addressed from 0 to M - 1, where M = L , . In this case
the available space list is initialized to indicate one
available block, of size index n at address O. If the size
of the initial block M is not one of the defined block
sizes L~, L2 , L , , then we initialize the available
space list to indicate that a set of blocks of sizes L~, Lj2,
• . . , L h is available at locations 0, L~,, Lj, + L ~ , . . . ,
~=~ Lj,, respectively, with M = Y.~=~ LS. The T Y P E
fields are set to indicate all blocks as left buddies (0b).
This prevents the release routine from trying to com-
bine these blocks when any of them became available.
If an address of a buddy is generated which is greater
than M - 1, it is t reated as a buddy which is not
available. As an example, an initial block of size 25
would provide initial blocks of size 16, 8, and 1 at
locations 0, 16, and 24, respectively, for the binary
buddy system, or of sizes 21, 3, and 1 at locations 0,
21, and 24, respectively, for the Fibonacci buddy
system.

Block sizes can be in any unit of storage (bytes,
halfwords, words, doublewords, etc.) since, if L1,
Lz, • • . , Ln is a solution to a set of recurrence relations
(1), then y "L1, y ' L e , y ' L n is also a solution for
constant y . An initial block whose absolute starting
address is L, rather than zero, can be used in a buddy
system by considering all addresses to be relative to

423

location L. Other similar minor variations to the basic
buddy system are also possible.

3. An Even More General Class of Buddy Systems

The major problem in the algorithm described in
Section 2 was the computat ion of the address of the
buddy of a released block. An alternative approach to
the solution given in Section 2 is to store the address of
the buddy of a block explicitly in the block when the
two buddies are created. Thus, if P and Q are buddies,
each will contain a pointer pointing to the other• This
can be extended to allow any number of buddies to be
created f rom a block by linking them in a circularly
linked list. However , now when a block is split into
subblocks and these blocks are recombined, we must be
able to recreate the pointer to the buddies of the re-
combined block. One solution would be to break the
pointer up into parts which are stored in the header of
its subblocks, as was done with the T Y P E field of the
algorithm presented in Section 2. If sufficient room
exists in the header word of each block, this change is a
minor variation of the algorithm of Section 2.

Another approach is to retain the header of a block
when it is split into subblocks. I f /x storage units are
needed for a header containing a T A G field (to indicate
available/allocated status), an I N D E X field (to store a
size index), and the pointer to the next buddy in the
circularly linked list, then a buddy system can be de-
signed for any set of block sizes L1, L2, • • •, Ln which
satisfy a set of recurrence relations to the form

L~ >-- tx + Lj~, 1+ L&2 + " ' " + L~,z,), i = 1, . . . , n

with the restriction thatj~,r < i for all r , 1 <- r <- l (i) . A
block of size index i at location P is split into a header
word (of length /z at location P) and l(i) buddies,
circularly linked through their header words, of size
indices, j~,l, j~.z j~,z<i) at locations P + /z, P + /x +
Lj~,I, P + /z + ~] - 1 L&r, respectively. I f the
pointer is d ismembered and stored in the header words
of the subblocks as ment ioned above, we have /z = 0. It
would be necessary to require that j~,r = i - 1 for some
r (for each i) because of the search policy in the request
procedure, but a more complicated search policy might
be able to remove this constraint also for some buddy
systems. (The problem is; If a block of size index i is
requested and not immediately available, where do we
look for a block which can be split to produce a block of
size index i? In the algorithm of Section 2, we look at
i + 1, i + 2, etc. If a block of size index i + 1 is
available, it makes sense to use this to produce the
requested block of size index i.)

An example of the use of this algorithm is a system
which requires blocks of sizes 12, 80, and 132, the first
for a control block, the second for a card image buffer,
and the third for a line printer image buffer. Figure 2
illustrates how blocks can be split in a system with ~ =

Communications June 1977
of Volume 20
the ACM Number 6

2, starting from a block of size 136. Under the binary
buddy system, it would be necessary to allocate blocks
of sizes 16 ,128 , and 256 with large internal f ragmenta-
tion. The weighted buddy system does somewhat bet ter
on internal fragmentat ion with blocks of sizes 16, 96,
and 192. (Remember that the header word in these
systems takes at least the first word; so to have 12
usable words, at least 13 must be allocated.) The Fi-
bonacci buddy has very low internal fragmentat ion with
block sizes of 13, 89, and 144, but with an initial block
of size 144, only 8 blocks of size 13 can be created,
while 9 blocks of size 14 can be created from an initial
block of size 136 in the pointer buddy system of Figure
2.

4. Internal Fragmentation

Unless the set of requested block sizes is a subset of
the set of provided block sizes, it will be necessary to
allocate more memory than is requested for some re-
quests. The memory wasted due to this overallocation
is internal fragmentat ion. The amount of internal frag-
mentat ion will vary depending upon the set of provided
block sizes and the distribution of requests for memory .
Thus it can be used as a point of comparison for buddy
systems.

A measure of internal fragmentat ion can be defined
in several ways. Several researchers [4, 7, 11] have
considered the ratio of average allocated space to aver-
age requested space. This measure is difficult to com-
pare with external fragmentat ion in order to compute
total f ragmentat ion, however. Another suggested
measure is the ratio of overallocated memory (average
allocation minus average request) to total memory size
M, but this results in a measure which is a function of
both the buddy system and the memory size. We have
chosen to use a measure of internal fragmentat ion
which is the ratio of overallocated memory to allocated
memory . This measure is a function of the buddy sys-
tem and the request distribution. By knowing the pro-
portion of total memory which is allocated, the ratio of
overallocated memory to total memory can be com-
puted.

Letting h(i) be the size of the allocated block for a
request of size i and Pi be the probabili ty of a request of
size i, we have the internal fragmentat ion for a request
distribution with requests for blocks of memory in the
range 1 to rn defined by

pi(X(i) - i) p,h(i).
i=1

Notice that since we are interested in comparing the
utilization of memory of buddy systems, the probabili ty
pi is the probabili ty of finding a block of size i in
memory . This probabil i ty will, in general, differ f rom
the probability of a request for a block of size i. The
probabili ty of a block being allocated in memory is

424

influenced not only by the request distribution and the
memory management scheme, but also by the size of
memory and the lifetime distribution for requests. If
request lifetimes are independent of request sizes and
the size of memory is large relative to the maximum
request size, however, the difference between these
two probabilities will be minimal.

In order to compare the performances of the previ-
ously published buddy systems (binary, Fibonacci, and
weighted), the internal f ragmentat ion for a uniform
probabili ty distribution has been investigated. A uni-
form distribution of blocks in memory , or even a uni-
form request distribution, is admittedly not very realis-
tic, but it is mathematical ly tractable, and the relative
performance of buddy systems under this distribution is
believed by the authors to be indicative of the perform-
ance under other distributions. The simulation results
of Section 5 for both a uniform distribution and a
(truncated) exponential distribution and of Section 6
for three actual request distributions support this be-
lief, but a major motivation for examining the uniform
distribution is its mathematical tractability and the fact
that real memory distributions tend to be very system
specific and hard to work with analytically.

For a uniform distribution of requests f rom 1 to m ,
the average internal f ragmentat ion is

(h m -- am)/~k m = 1 - a m / X m ,

where

am = 1 + 2 + 3 + 4 + " " + m = ~ i = (m z + m) / 2 ,
i=1

Xm = X(1) + h(2) + X(3) + h(4) + " ' " + X(m),

with h(i) being the size of the block which is allocated
for a request of size i (h(i) = Lk such that Lk-1 < i <--
Lk). Noting that h(i) is constant for Lk-1 < i --< Lk, we
can express the s u m hm, for Lk --< m -- Lk+l, as

k

A m = Z~ -[- ~a t i " (t i - t i - 1) "q- o g (t k + l - Z k) " Z k + l ,
i=2

with m = Lk + ct(Lk+l - Lk), 0 <-- a --< 1. The parame-
ter a indicates how close m is to Lk or Lk+l. For buddy
systems based on the set of recurrence relations (1),
this is then

k

h,, = L~ + ~ L i ' L , ,) + aLk+l"L~k+l).
i=2

The Fibonacci-like sequences which were suggested as
the basis of a class of buddy systems by Hirschberg [4]
have been studied by Harris and Styles [3] and Fergu-
son [2]. If we define

u i = 0, f o r i < 0 , u0 = 1,
ttt+l = u i + Ut-p, for i >-- 0,

then we have Li = ui with

fl(i) = i - p - 1, i > p
= 0 , i<-p .

C o m m u n i c a t i o n s J u n e 1977
of V o l u m e 20
the A C M N u m b e r 6

Fig. 2. Tree structure for a pointer buddy system with p. = 2,
providing usable blocks of sizes 12, 80, 132.

SIZE

136

90

q4

14

FREQUENCY

i

i

3

9

Table I. Asymptotic values of the maximum and mimmum internal
fragmentation for a uniform distribution of requests from 1 to m (as
m ~ oo) for buddy systems based on the recurrence relations u~ = u ,
+ Ui_u_ 1 .

Internal fragmentation

P 6 max min

0 2.000 0.333 0.250
1 1.618 0.236 0.191
2 1.466 0.189 0.159
3 1.380 0.160 0.138
4 1.325 0.140 0.123
5 1.285 0.125 0.111
6 1.255 0.113 0.102
7 1.232 0.104 0.094
8 1.213 0.096 0.088
9 1.197 0.090 0.082
10 1.184 0.084 0.078

(F o r p = 0, ui = T ; for P = 1, ui = Fi+i). Then

k - - p - 1

hm : 1 + ~ U i ' U i + p + 1 At- 0£ U k + 1 " U k _ p
i=0

m = u k + a U k - p , O <~ a <<- 1.

Harris and Styles [3] have invest igated the sequences u~
and proved many useful s u m m a t i o n and product for-
mulas . They also show that the l imit , as k ~ oo, of
Uk÷~/Uk is the largest real root of the e q u a t i o n x v+~ - x p
- 1 = 0. Fe rguson [2] gives numer ica l values for these
roots.

If we let 6 be the largest real root o fx p+I - x p - 1 =
0 (1 - 6 -< 2), then u~ may be approx imated by c . 6 ~ for
an appropr ia te choice o f c . (F o r p -- 0, u~ = 1 • T ; f o r p
= 1, ui = F , -~ 6 " / x / 5 .) The approx imat ion is quite
good even for small i owing to the form of the zeros of
x p÷~ - x p - 112]. With this approx imat ion ,

k--p-- i

h m ~ 1 + ~ C262i+p÷l "~- 0LC262k-p+l
i=0

= 1 + c 2 (6 2 k - p ÷ i - - 6 P ÷ 1) / (6 2 - - 1)

-~- O lC262k - -P+l

= 1 + [c2/(62 - 1)]-[(1 + a (62 - 1)).62k~+l
- 6p+q .

425

am = ~(m 2 + m)
= ~ [c 2 62k + 2 a c 2 62k -v + a 2 c 2 62k-2p + c 6 k

+ ac6k-~].

A n d in terna l f r agmenta t ion is

1 - a m / h m =

(62 - 1) [62~ + 2 o~62k-p + a262~-2" + (6 k + a 6 k-") /c]
1 -

2(62 - 1)/c 2 + [1 + (62 - 1) a]" 62k-p+~ - 6 p+~)

and, as k ~ 0%

- 1

= 1 -

= 1 -

(62 - 1)(62p + 2a6P + ~)

211 + a(62 - 1)]6 v+l

(6 2 - 1)(6 v + 002

26(6p + a [6 p+2 - ¢p)]

(62 - 1)(6p + a) 2
0 _ < a < _ l .

2 6 (6 ~ + ~ 6 + ~) '

This funct ion of a has a m a x i m u m value of (6 - 1)/
(6 + 1) when a = 1/(6 + 1), and a m i n i m u m value of
(6 - 1)/26 when a = 0 or a = 1. Table I lists the
values of 6 and the m i n i m u m and ma x i mum in te rna l
f ragmenta t ion for p = 0 10. The b inary buddy
system (corresponding to p = 0) has an in terna l frag-
men ta t i on of 25 to 33 percent of al located memory .
The Fibonacci buddy system (p = 1) suffers f rom 19 to
23.6 percent wasted m e m o r y due to in te rna l f ragmen-
tat ion. This agrees with the computa t ions of K n u t h [6]
(for the b inary buddy) and Russell [11] (for the F ibon-
acci buddy) .

The block sizes of the weighted buddy system do
not cor respond to any of the systems whose in te rna l
f ragmenta t ion is given in Table I. In te rna l f ragmenta-
t ion for the weighted buddy system requires the analy-
sis of two cases:

(1) 2 k - < m - < 3 - 2 k-l , m = a2 ~, 1 - < a - - < ~ ,

(2) 3 . 2 k - l - < m - < 2 k+l, m = a2 k, ~ -< a - < 2 .

As m ~ oo in these cases, in te rna l f r agmenta t ion be-
comes

(1) 1 - 2 a 2 / (6 a - ~)

= (6 a 2 - - 18a + 11)/(11 - 18a), 1 -< a --<

(2) 1 - 2 a 2 / (8 a - ~-)

= (3 a 2 - - 12a + 10)/(10 - 12a), § -< a -- 2.

In te rna l f r agmenta t ion for the weighted buddy system
has a ma x i mum value of ~ (0 .185) at a = ~ - and a
m i n i m u m value of~ (0 .143) at a = 1 or a = 2. A local
ma x i mum of ~ (0 .167) occurs at a = 5, and a local
m i n i m i n u m of ~ (0 .156) occurs at a = 3.

From these calculat ions, we see that the weighted
buddy system always has lower in te rna l f r agmenta t ion
than the Fibonacci buddy system, which always has
lower in te rna l f r agmenta t ion than the b inary buddy
system. Because of the similar block sizes for the b inary
and the weighted buddy systems, we can compare their

Communications June 1977
of Volume 20
the ACM Number 6

internal fragmentation directly to show that the binary
buddy system has from 2.08 (m = 3"2 k) to 1.72
(m = 1 .08 .2 k) times more internal fragmentat ion than
the weighted buddy system. Clearly the weighted
buddy system performs much bet ter than either the
binary or Fibonacci buddy systems in terms of internal
fragmentation.

It must be emphasized, however, that these results
are valid only for the particular theoretical distribution
considered here. For a real distribution, internal frag-
mentat ion may be considerably different depending
upon the "fi t" of the provided block sizes to the re-
quested block sizes.

5. External Fragmentation, Total Fragmentation, and
Execution Time

Internal fragmentat ion is not the only measure of
memory utilization, however. External fragmentat ion
can also decrease the effective size of available mem-
ory. Unlike internal f ragmentat ion, which occurs con-
tinuously in a buddy system, it is a matter of definition
whether external fragmentat ion can be said to occur
before a request for memory must be rejected because
all available blocks are of insufficient size (i.e. before
memory overflows). A measure of external f ragmenta-
tion is the proport ion of total memory which is availa-
ble when overflow occurs. This measure depends upon
the specific sequence of requests and releases which
precede overflow, and is therefore difficult to deal with
analytically, al though at tempts to analyze other mea-
sures of external f ragmentat ion have been made [10].

Internal and external fragmentat ion result f rom dif-
ferent propert ies of the buddy system, but both de-
crease the effective size of the available memory which
is being managed by making portions of that memory
unusable. We define total fragmentation of a buddy
system to be the total amount of memory which is
unusable due to either internal or external f ragmenta-
tion (normalized by dividing by the total memory size).
Since our definition of internal fragmentat ion is the
proport ion of allocated memory which is unusable,
while external fragmentat ion is a proport ion of total
memory , total f ragmentat ion is not a simple sum of
internal and external, but rather ,

total = (1 - external) - internal + external
= internal + external - in ternal .external .

Another important proper ty for a buddy system is
its running time. The original advantage of the buddy
system over first-fit or best-fit memory management
schemes was its reduction in search time to find and
allocate an available block of the appropriate size.
Three statistics are important in a buddy system. In the
algorithm description of Section 2, these are the num-
ber of times that steps Q1 (the number of searches), Q2
(the number of splits), and L2 (the number of recombi-

4 2 6

nations) are executed. In equilibrium, the number of
splits will be equal to the number of recombinations; so
only two statistics are needed. Also, the number of
splits is always less than or equal to the number of
searches, and if, as would be hoped, the number of
searches is normally 0 or 1, these two statistics will also
be equal. (The discrepancy between the number of
searches and the number of splits occurs when a block
of size Lj is split into subblocks of sizes Lj-1 and L~j),
and the block of size La~j) is used to continue the
splitting. In the binary buddy system, ~(j) = j - 1, and
the two statistics are equal.)

A simulation of four buddy systems (binary, Fibon-
acci, weighted, and the F-2 buddy system based on the
recurrence relation L i + 1 = L~ + L,-2) was used to obtain
comparat ive values of internal, external, and total frag-
mentat ion as well as the average number of searches,
splits, and recombinations. Request and release proce-
dures for a general buddy system were p rogrammed .
Since we wished to obtain both internal and external
fragmentat ion figures, the memory management
schemes were driven at overflow in the simulation. A
31-bit uniform pseudo-random number generator was
used to produce an unbounded sequence of requests
according to either a uniform distribution f rom 1 to m
or a (truncated) exponential distribution with mean
m/2. Associated with each request was a uniformly
distributed block lifetime. If a block was allocated at
time ~-, then it was queued for release at r plus the
lifetime of the block. Requests were made until over-
flow occurred. Then blocks were released (and the
simulation timer incremented as needed) until the
block which caused overflow could be successfully re-
quested; the system then returned to making requests
until overflow occurred again. This process of alter-
nately requesting and releasing blocks continued until a
fixed number of (simulated) t ime units had elapsed. At
regular intervals, statistics on internal, external, and
total fragmentat ion were taken. The number of
searches, splits, and recombinat ions was also recorded.
Identical request sequences were given to all buddy
systems.

For our simulations, a memory of 10,000 words was
simulated. The block lifetimes were uniformly distrib-
uted from 1 to 10. The simulations continued for 4000
time units at first, and, as our budget became tighter,
for 2000 time units (with no significant change in re-
sults). The uniform request distributions were investi-
gated as m, the maximum request size, varied from 40
to 1000 in steps of 10.

For the exponential request distribution, the distri-
bution was truncated to generate requests which were
less than 1000 with a mean which varied from 50 to
about 400 (to match the mean of the uniform distribu-
tion) by steps of 25 (due to budget pressures). The
actual mean did not vary by steps of 25, but increased
more slowly owing to the effect of discarding requests
greater than 1000. Thus the mean of the last generating

Communicat ions June 1977
of Volume 20
the ACM Number 6

Fig. 3. Internal fragmentation for a uniform request distribution.

0 . 4

Fig. 5. External fragmentation for a uniform request distribution.

O.4

O.a

0.2

0.1

Fibonacci

Weighted

0~
0 100 200 300 400 500

Average Request Size

0..~

o.~

0.1

Weighted

B i n a r y Bin~y"

0$
o :too 200 8o0 460 ~o

Average Request Size

Fig. 4. Internal fragmentation for a (truncated) exponential request
distribution.

Fig. 6. Externfil fragmentation for an exponential request distribu-
tion.

0.3-
t .

e .

o.~

E

0.t

0.~

_ _ - - -

Fibonacci

F-2

Weighted

t00 200 360 460
Average Request Size

.o

r ~

0.3

0.~

0.~

/

Binary

o i o o ' 86o ' 4 6 0

Average Request Size

exponential distribution was 400, but the mean of the
truncated distribution was only 345. All results are
presented in terms of the true mean of the truncated
distribution.

The results of our simulations for internal fragmen-
tation are presented in the graphs of Figure 3 (for a
uniform distribution of requests) and Figure 4 (for an
exponential distribution of request) . The curves of Fig-
ure 3 agree with the computat ions of Section 4 to
within 1 percent, lending support to the validity of our
simulations. Notice that both the relative position and
the average internal fragmentation of the four buddy
systems do not change radically as a function of the two
distributions presented.

Figures 5 and 6 present our simulation results for
external fragmentation. We notice that although our
measure of external fragmentat ion is not directly com-

427

parable to the measures of other studies, our results are
compatible with the previous observations of Knuth [6]
and Purdom and Stigler [10]. The values obtained for
the buddy systems also seem reasonable if we consider
that the lower internal fragmentat ion values of Figures
3 and 4 were obtained because of the increased number
of different block sizes which are available in the
weighted buddy and F-2 buddy systems over the num-
ber available in the binary and Fibonacci buddy sys-
tems. With a smaller intrablock difference (Li - L H) , a
bet ter fit to the requested block size can be made,
yielding lower internal fragmentat ion. However , this
also produces a smaller available buddy (if a block is
split), and this smaller block is less likely to be as useful
as the larger buddies provided by the binary and Fibon-
acci buddy systems. These small unusable but available
blocks contribute to higher external fragmentat ion.

Communications June 1977
of Volume 20
the ACM Number 6

These considerations also lead us to the conclusion
that these smaller blocks will (being unused) be availa-
ble when their buddies are released and hence will be
recombined immediately, requiring the resultant par- 0.9
ent block to again be split if the just released block size
is requested again. This should result in an average
number of searches, splits, and recombinations which
parallels the external fragmentat ion of a buddy system. ~" o.~
Figure 7 presents the average number of searches for a
uniform request distribution. The graphs for the num- .~
ber of splits and recombinat ions are identical to each "~

d~ 0,4
other and similar to the graph of Figure 7. The savings ,~
in the number of splits due to using the smaller of fl(j) ,~
and j - 1 are minor . The largest savings are for the .~
Fibonacci buddy system where, for example, for a uni- z o.z g~
form distribution from 1 to 1000, the average number "~
of searches is 0.44 while the average number of splits is <~
0.35. The standard deviations of these performance o.o
measures increase as the external fragmentat ion in- o
creases also (being on the order of 1.00 for the
weighted buddy system).

The total f ragmentat ion for the four buddy systems
investigated is plotted in Figure 8 (for a uniform distri-
bution of requests) and Figure 9 (for an exponential
distribution). While we apologize for the difficulty in
reading these graphs, one very important conclusion
can be drawn from this exact problem: The total "=~ 0.4
amount of usable space in a buddy system is relatively
independent of the buddy system used. The total frag-
mentat ion for all these buddy systems lies in a band, .~
with the difference between the best and the worst total ~ o,a
fragmentat ion being only 5 to 10 percent of total mem-
ory. The standard deviation of the points on the total
f ragmentat ion curves is in the same range (5 to 10 per- o.~
cent).

6. Simulations of Actual Request Distributions

Fig. 7. Average number of searches per request for a uniform re-
quest distribution.

i0o zOO sOO 46o s6o
Average Request Size

Fig. 8. Total fragmentat ion for a uniform request distribution.

0.5

V ~ " F-2

~Weighted

o 16o z6o a6o 460 560
Average Request Size

In addition to the simulations using the theoretical
distributions, simulations were per formed for each of
the four buddy systems with each of three actual re-
quest distributions. The actual request distributions,
listed in Table II , were the distribution of buffer re-
quests on the UNIVAC 1108 Exec 8 system at the Uni- o =
versity of Maryland [4], the distribution of memory "5 0.4
requests on an IBM 360 CP-67 system [8], and the
distribution of partition size requests on the IBM 360/65
OS MVT system at Brigham Young University.

Note that the University of Maryland and Brigham ~ 0.8
Young University distributions are labeled "continu-
ous." This is because their tables consist of points on
the cumulative distribution function between which the
probabili ty is equally distributed over the integers. 0.2
Consider, for example, the first two entries in the
University of Maryland table. This implies zero proba-
bility for a request of size 1 or 2 and a probabili ty of
0.06 for each of sizes 3-8.

Fig. 9. Total fragmentation for an exponential request distribution.

0.5

/
/

Binary

--Fibonacci

. F-2

~ W e i g h t e d

10o ' 300
Average Request Size

400

428 Communicat ions
of
the ACM

June 1977
Volume 20
Number 6

The CP-67 distribution is a discrete distribution.
There is zero probability of request sizes not shown in
the table.

The simulations were run in the same way as the
Size CDF (%)

simulations of Section 5, with the exception that the
actual distributions listed in Table II were used to 2 0.0

8 36.0
generate the sequence of requests, and because of the 10 44.0
smaller average request for these distributions, a mem- 15 54.0
ory of only 1000 words was used. 25 84.0

The results of these simulations are given in Tables 30 94.0
I I I -V. The measured internal, external, and total frag- 35 96.5

40 97.5
mentation are presented as well as the expected inter-

50 98.5
nal fragmentation for each distribution and buddy sys- 70 99.3

tern. The expected internal fragmentation was com- 100 99.6
puted directly from the request distribution as defined 200 100.0
in Section 4. The results of these simulations compare
very favorably with the results obtained in Section 5
with the theoretical distributions. Between 28 and 43
percent of available memory is being wasted owing to
internal and external fragmentation.

7. Summary and Conclusions

We have, in this paper, considered a number of
properties of dynamic storage allocation schemes based
upon the buddy system. We have presented two gen-
eral algorithms which can be used to implement a wide
variety of buddy systems. Then, using these algorithms,
we investigated, first analytically and then by simula-

Table II. Actual request distributions.

University of Brigham Young CP-67
Maryland University

Size CDF (%) Size PDF (%)

3 0.0 1 11.1
16 6.4 2 0.2
32 16.8 3 3.7
48 27.6 4 24.8
64 40.0 5 21.9
80 45.8 6 0.3
96 62.7 7 0.6

112 82.6 8 11.2
128 94.9 9 2.0
144 95.3 10 4.1
160 95.7 11 0.2
176 96.1 12 0.2
192 96.4 17 0.9
208 97.0 18 1.9
224 98.3 21 0.2
256 99.4 23 0.3
272 99.6 27 0.1
304 99.8 29 15.6
352 99.9 31 0.4
511 100.0 50 0.3

("continuous" ("continuous" (discrete
distribution) distribution) distribution)

average request average request average request
= 15.99 = 80.26 = 9.34

Table III. Simulation results using University of Maryland request
distribution [4].

tion, the fragmentation characteristics of several buddy Expected
internal Internal External Total

systems. These results, presented in Figures 3-9 and Buddy fragmenta- fragmenta- fragmenta- fragmenta-
Tables I I I -V, indicate that as internal fragmentation system tion tion tion tion
decreases (owing to more block sizes) external frag- binary .276 .276 .179 .406
mentation increases (owing to more small blocks). To- Fibonacci .198 .199 .217 .373
tal fragmentation remains relatively constant, with F-2 .155 .154 .265 .378
from 25 to 40 percent of memory being unusable owing weighted .137 .137 .305 .400
to either internal or external fragmentation. The execu-
tion time of the request and release procedures in-
creases with external fragmentation.

Some general comparisons can be made, however, Expected
internal Internal External

for the binary, Fibonacci, and weighted buddy systems. Buddy fragmenta- fragmenta- fragmenta- Total frag-
The total fragmentation of the weighted buddy system system tion tion t ion mentation
is generally worse than that of the Fibonacci buddy binary .182 .188 .114 .281
system. The total fragmentation of the binary buddy Fibonacci .131 .136 .189 .300
system varies widely because of its internal fragmenta- F-2 .210 .216 .230 .397
tion characteristics. Still the variation among these weighted .103 .107 .239 .321

buddy systems is not great, and the lower execution
time of the binary buddy would therefore seem to
recommend it for general use, although the execution
time of the Fibonacci buddy system is not much

Expected
greater. The weighted buddy system seems to be less internal In te rna l External Total
desirable than either the binary or the Fibonacci sys- Buddy fragmenta- fragmenta- fragmenta- fragmenta-
tems owing to its higher execution time and greater system tion tion tion tion
external fragmentation, binary .227 .227 .151 .343

In conclusion then, we would recommend that the Fibonacci .222 .222 .212 .387
memory management module of a system be con- F-2 .163 .162 .318 .429

weighted .134 .132 .323 .413
structed as either a binary or Fibonacci buddy system

4 2 9

Table IV. Simulation results using CP-67 request distribution [8].

Table V. Simulation results using Brigham Young University request
distribution.

Communications June 1977
of Volume 20
the ACM Number 6

before any information concerning the actual distribu-
tion of block sizes is obtained (assuming of course that
a buddy system is to be used at all). With these systems,
there is a reasonable assurance that no better buddy
system can be chosen without knowledge of the actual
request distribution. With the system in actual use,
statistics on the actual request distribution can be ob-
tained and, if deemed appropriate, a new buddy system
can be tailored [9] to that distribution by use of the
algorithms of either Section 2 or Section 3. The new
system can then replace the original buddy system to
improve memory utilization and execution speed.

Appendix. A General Algorithm for Buddy Systems

The following PASCAL procedures implement the al-
gorithm of Section 2. The constants null, n, and m are:
a special address indicating that overflow has occurred
in the request procedure, or that the buddy of the block
at p is not available in the buddyaddress function; the
number of different block sizes which are provided by
the buddy system; and the size of the memory block
which is being managed by the buddy system, respec-
tively. The attachtoasl and removefromasl procedures
are standard doubly linked list insertion and deletion
routines. The buddyaddress function returns null or the
address of the buddy of the block at p if the buddy is
available for recombination.

CONST null = - 1;

TYPE address : nul l . . m ;
s izeindex : 1 . . n;

VAR size: array [sizeindex] of 1 . . m;
subbudd y : array [sizeindex] of 0 . . n ;
m e m o r y : array [0 . . m]

of packed record
tag:
a,b :
index:
fo rward:
backward:

end;
asl: array [sizeindex]

of record
head, tail: address;

end;

procedure attachtoasl (p : address) ;
begin

end;

(available, allocated) ;
(left, right) ;
s i ze index;
address ;
address ;

with m e m o r y [p], asl [index]
do begin

ba ckw a rd := null;
f o r w a r d := head;
head := p;
if tail = null then tail "= p ;

end;

procedure r em o ve f rom as l (p: address);
begin

with m e m o r y [p], asl [index]

do begin
if backward = null

then head := f o r w a r d
else m e m o r y [backward] . f o rward := f o rward;

if f o r w a r d = null
then tail := b a c k w a r d
else m e m o r y [f o r w a r d] . b a c k w a r d := backw a r d ;
end;

end;

function b u d @ a d d r e s s (p : address): address ;
var q : address;

j: s ize index ;
begin

if m e m o r y [p].a = left
then begin

q := p + size [memory[p] . index];
if (q >_ m) k~ (memory[q] .a = left) k/
(memory[q] . tag =allocated)
then q := null;

end
else begin

j := s u b b u d d y [1 m e m o r y [p] . i n d e x] ;
q := p - s ize [/'];
if (memory[q] . index 4 j)
k/ (memory[q] . tag=al loca ted)
then q := null;

end
buddyaddress := q ;

end;

procedure request (var p: address; i: s ize index) ;
var j: s ize index;

q: address ;
begin

j : = i ;
while (j<n) /~ (asl [j] .head=nul l)

d o j : = j + 1;
if asl [j] . h ead=nu l l

then p := null
else begin

p := asl [.]].head;
r emove f romas l (p);
while j > i

do begin
q := p + size [subbuddy[j]];
with m e m o r y [q]

do begin
tag := available;
b := m e m o r y [p] .b ;
a := right;
index := j - 1;

end;
with m e m o r y [p]

do begin
tag := available;
b := m e m o r y [p] . a ;
a := left;
index := s u b b u d d y [j];

end;
if i <- s u b b u d d y [j]

then attachtoasl (q)
else begin

attachtoasl (p);
p : = q ;

end;
j := m e m o r y [p] . index;

end;
m e m o r y [p] . tag := allocated;

end;
end;

4 3 0 Communications June 1977
of Volume 20
the ACM Number 6

procedure release (p : address ; i: sizeindex) ;
var q,r: address;
begin

q := buddyaddress (p);
while q 4: null

do begin
removefromasl (q) ;
ifp > q

then begin r := p ; p := q; q := r end;
with memory [p]

do begin
tag := available;
a := memory [p].b;
b := memory [q].b;
index := 1 + memory [q].index;

end;
q := buddyaddress(p);
end;

attachtoaslp (1)
end;

Received October 1974; revised May 1976

References
1. Cranston, B., and Thomas, R. A simplified recombination
scheme for the Fibonacci buddy system. Comm. ACM 18, 6 (June
1975), 331-332.
2. Ferguson, H.R.P. On a generalization of the Fibonacci numbers
useful in memory allocation schema. The Fibonacci Quart., 14, 3
(Oct. 1976), 233-243.
3. Harris, V.C., and Styles, C.C. A generalization of Fibonacci
numbers. The Fibonacci Quart. 2, 4 (Dec. 1964), 227-289.
4. Hirschberg, D.S. A class of dynamic memory allocation
algorithms. Comm. A C M 16, 10 (Oct. 1973), 615-618.
5. Knowlton, K.C. A fast storage allocator. Comm. A CM 8, 10
(Oct. 1965), 623-625.
6. Knuth, D.E. The Art o f Computer Programming, Volume 1:
Fundamental Algorithms, Addison-Wesley, Reading, Mass., 1968,
pp. 435-455.
7. Lewis, T.G., Smith, B.J., and Smith, M.Z. Dynamic memory
allocation systems for minimizing internal fragmentation. Proc. ACM
Annual Conf., Nov. 1974, pp. 725-728.
8. Margolin, B.H., Parmelee, R.P., and Schatzoff, M. Analysis of
free-storage algorithms. IBM Systems J. 10, 4 (1971), 283-304.
9. Norman, T.A. Tailored buddy systems for dynamic storage
allocation. Proc. Fourth Texas Conf. Comptg. Systems, Nov. 1975,
pp. 2B-3.1-2B-3.5.
10. Purdom, P.W., and Stigler, S.M. Statistical properties of the
buddy system. J. A C M 17, 4 (Oct. 1970), 683-697.
11. Russell, D.L. Internal fragmentation in a class of buddy systems.
Tech. Note 54, Digital Systems Lab., Stanford U., Stanford, Calif.,
Jan. 1975.
12. Shen. K.K., and Peterson, J.L. A weighted buddy method for
dynamic storage allocation. Comm. A C M 17, 10 (Oct. 1974), 558-
562. Corrigendum, Comm. A C M 18, 4 (April 1975), 202.

Programming
Techniques

G. Manacher, S.L. Graham
Editors

A Bounded Storage
Algorithm for Copying
Cyclic Structures
J. M. Robson
University o'f Lancaster, England

A new algorithm is presented which copies cyclic
list structures using bounded workspace and linear
time. Unlike a previous similar algorithm, this one
makes no assumptions about the storage allocation
system in use and uses only operations likely to be
available in a high-level language. The distinctive
feature of this algorithm is a technique for traversing
the structure twice, using the same spanning tree in
each case, first from left to right and then from right to
left.

Key Words and Phrases: copying, shared subtrees,
cyclic structures

CR Categories: 4.49, 5.25

431

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Author's address: Computer Studies Department, University of
Lancaster, Bailrigg, Lancaster LA1 4YN England.

Communications June 1977
of Volume 20
the ACM Numb2r 6

