Age-Based Garbage Collection

Stefanovic, McKinley and Moss

Older-first Garbage Collection in Practice:
Evaluation in a Java Virtual Machine

Stefanovic, Hertz, Blackburn, McKinley and Moss

Presented by Jin Yu
Mar 20, 2012

e [Paper 1]: Age-Based Garbage Collection
— New GC algorithm: Older-First algorithm (Age-Based)
— Comparison of several garbage collectors by simulation

e [Paper 2]: Older-First Garbage Collection in
Practice: Evaluation in a Java Virtual Machine

— Implementation of Older-First algorithm
— Comparison of several garbage collectors

Outline

Introduction

e Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]

Conclusion

Introduction

e Generational Collector (traditional)
— Younger generations are frequently examined

— What if objects do not have enough time to die? (e.q.,
the very youngest objects)

— Copying cost!
e Older-First Collector (proposed in [paper 1])
— Older generations are frequently examined
— Lower copying cost, but higher pointer tracking cost!

e |f total cost is copying + pointer tracking, Older-
First performs better!

3

Outline

Introduction

» Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]

Conclusion

Age-Based Garbage Collection

e Youngest-Only Collection (YO)

oldest — X—,'— = —m youngest
' [

CollecHon 1

Collection 2

C : collected region L7 region(s) not collected)
S @: region of survivors (- area freed for new allocation

Age-Based Garbage Collection

e Generational (Youngest-Only) Collection

older gena'aﬁ'm o NSy
reserve r:u' . mL youngest
Collection 1
,.,-'-"'__.
: g from Collection 2
o — —=&___ freed reserve
oldes]™—————
¢ oll 3
Collection
.U'Ll'f an S - l ”I“ﬂ' ,I'ig,ﬁ'P__:'

C : collected region L7 region(s) not collected)

S @: region of survivors (- area freed for new allocation

Age-Based Garbage Collection

e Oldest-Only Collection (OO)

youngest
Collection 1

Collection 2

C : collected region L7 region(s) not collected)
S @: region of survivors (- area freed for new allocation

Age-Based Garbage Collection

e Older-First Collection (OF)

oldest — 7 — - ——————— younges!

Collection 1

Collection 2

Collection 3

C : collected region L7 region(s) not collected)
S @: region of survivors (- area freed for new allocation

Older-First Window Motion Example

oldest youngest

C Callection 1

c Collection 2

Collection 3

i ¢ Callecéion 4

Callecéion 5

i
II
1
|

5 emipn) Collection &

? Collection 7
I i _ |

L Collection 8

Outline

Introduction

e Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]

Conclusion

10

Benchmarks in [Paper 1]

e Refer to Table 1 for benchmark properties
e Based on Object-Oriented languages

e Java
— JavaBYTEmark, Bloat-Bloat, and Toba

e Smalltalk

— StandardNonlnteractive, HeapSim, Lambda-Fact5,
Lambda-Fact6, Swim, Tomcatv, Tree-Replace-Binary,
Tree-Replace-Random, and Richards

11

Estimating Copying Costs

JavaByY TEmark

LN e
£ OF -n--
A 26
' IG -a--

0.2 | e _

Mark/cons ratio of best configu ration
(elative to NG)

g B

100000 150000 200000 250000 300000 350000 400000
Heap size (words)

(a) Best configuration.

12

Estimating Copying Costs

A
35
3
E.o—.
B2 28
@ 2
e
=5
gg 1

0.5

JavaBYTEmark
X T T T T
iy, OO ——
#"L. Ul -
2 OF -a-
2G =
3G =

F.. -3~ --EE-- Eq. -HE--3-B8--BE- iEE. - f " q -

0.2 0.4 0.6 0.8
Fraction collected (of total heap size 238885)

(b) Representatrve heap size.

Estimating Copying Costs

Mark/cons ratio of best configu ration
(relative to NG)

0.8

0.6

D4

Bloat-Bloat
oD ——
gt A —— * + YO -+---
OF -m--
L 25 -u
T N T S 1 -
a1
) e ——
g.-'-‘-:: o :. 8- .

400000 600000 200000 1e+06G
Heap size (words)

(a) Best configuration.

14

Estimating Copying Costs

Mark/cons ratio

BHloat-Bloat

P

(relative to NG)
en

1 o & & [
'it;‘__ & * gOEg.O
D5 [T hne gt . o
Er ey s tn b T
D 1 1 1 1
0 0.2 0.4 0.6 0.8

Fraction collected g (of total heap size 446084)
(b) Representative heap size.

Write Barrier

e Rule: just remember a cross-block pointer whose
target will fall into the collected region earlier

than its source
e Directional filtering of pointer stores

oidest .--..--'E-:.-.---- — 3 i ---'.".---.J"':‘“:'Q'E"""t
= - S 3=i SR . ST s il _
@‘ % x . % x @] ﬁﬂ
—— — - S ::I-I:_.' o = O _..:'!:_"-- = it B — = i —r .ll---'

o

16

Estimating Total Costs: OF vs. 2G

e Total cost = Copying cost + Pointer-tracking cost

e OF outperforms on some benchmarks

— JavaBYTEmark, StandardNonInteractive, HeapSim,
Lambda-Fact5, Lambda-Fact6, and Richards

e OF and 2G have similar performance on the
remaining benchmarks

17

Example of Estimating Results

e Total collection cost: Lambda-Fact6

Lambda-Factt
3e+07 . . .

e —-—

2 5e+07 F -

2e+07 |

1.5=+07

Total cost (cycles), estimated

D 1 1 1 1 1 1 1
10000 20000 30000 40000 50000 60000 70000 20000 90000
Heap size (words)

Example of Estimating Results

e Total collection cost: Bloat-Bloat

2 .5=+08

estimated

Total cost (cycles)

0

2e+08

- 1.5e+08

1e+08 |

2e+07

Bloat-Bloat
| 2G5 —-—
OF —+—
|"*Hl..
-lzh"LL.;_-_I o _-..H._-_-_"-'*_r—_-._
-

200000 400000 00000 S0O000D 1e+D6 1.2e+06

Heap size (words)

19

Outline

Introduction

e Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]

Conclusion

20

Discussion of [Paper 1]

e Comparing Collectors

— OF achieves lower total costs than 2G in many cases

e Pointer Tracking

— OF gets higher cost here, but not excessive

e Caching and memory effects

— OF visits the entire heap more regularly
e [ocality in cache?
e Paging?

21

Outline

Introduction

e Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]

Conclusion

22

Problem Statement of [Paper 2]

e Validate the simulation model in [paper 1]

e Compare execution times and copying ratios
of OF and Generational collectors

e Explore pause times and the total collection
time tradeoff

23

Outline

Introduction

e Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]
Conclusion

24

Design and Implementation of the OF Collector

e Frame: maximum object size, minimum unit of
collection

e TOD (Time-of-Death): representing the age for
each frame, indicating the frame’s position in the
larger logical address

e Write Barrier: just remember a cross-block
pointer whose target block’s frame has a smaller
TOD value than its source block’s frame

25

Experimental Method

e Collector Families

— Generational
e Appel: 2G collector with variable nursery size
e Gen (2G) and OF collectors with fixed window size

— Non-generational
e Semi-space (S5S)
e Environment

— Jikes RVM 2.0.3, Macintosh PowerMac G4 (PowerPC),
32KB L1 cache, 256KB L2 cache, 640MB memory,
Yellow Dog Linux2.1 (kernel 2.4.10)

* Metrics: mark/cons ratio, execution time

26

Benchmarks in [Paper 2]

e Refer to Table 1 for benchmark properties

e Ten Benchmarks:

— SPEC_201 compress, SPEC_202_jess,
SPEC 205 raytrace, SPEC 209 db, SPEC 213 javac,
SPEC 222 mpegaudio, SPEC 228 mtrt,
SPEC_228 jack, pseudojbb, pseudojBYTEmark

27

Experiment Results for pseudojbb

e Mark/cons ratio

3 | | | | |
" en 5% - -8
.1 -) IR _ Gen 105 —
B oag Lo X Gen 15% ---x---
£i | Gen 20% ---*---
T B I \ . Gen 25% --o-B
2. - :b\ " Gen 0% - -B°
E e ST o 4 _,-"ll- * en 40% ---B---
g . “N S ™ "e Gen %‘:' e
El & o i-:l .I i I. .- ISEI-I —_— L
=T - T I :l""_:-a’/* x"-'*"-'-.l. 2 O __-' .
E I - ¥ ._:.L.- Mo [i -":fi'F
: AT
£~ TR I N ESO—— = .'jr"l L
E [T — '-'}:'- {I'j b
= -_.‘(E:.- M
['
|] E | | | | |
1 1.25 1.5 2 3

Heap size relative to mmimum heap size (log)

(a) Generational collector

Experiment Results for pseudojbb

e Mark/cons ratio

o

- | | .. | | BEse oo
[- S —— OF 108 + -
¥ OF 15% ---M---
B 1.8 e CIF 20, - e —
<L OF 25% -0
=T I T EO— 1 OF 30% - -g- —
e : OF 40% --&--
E 1.2 o, - OF BO%E - ol —
T S : OF 20% -
Ly | -) E—— & - . i :"""l_____ A
m e S ik
E — .-3!..-" * - 'E-.Ai‘:j- '- ?j
€ =R -
=
=
0 I I | | | I
1 1.25 1.5 2 2.5 3

Heap size relative to manimum heap size (log)

(b) Older-First collector

Experiment Results for pseudojbb

e Garbage collection time

3.5 I I 1 I I T
Gen 5% ---8-

Gen 10%. ——

T ISR, U Gen 1580 "e-am--- _
. Gen 20% -w%®
F X, . Gen 2H% B

r
P
b m

GG tme redative to Apped
M
!
lg;%
¥
-J“.?- I.
. :‘-M(: .
A o
oy i
!
! I

|
I. E

i
[}]

1 1.25 1.5 2 25 3
Heap size relative to minimum heap size (log)

(a) Generational collector

Experiment Results for pseudojbb

e Garbage collection time

2.2

2
1.8
1.8
1.4
1.2

1
0.3
0.8
0.4
0.2

i I I I I I I
1 1.25 1.5 2 2.5 3

Heap sze relative to minimum heap size {log]

(b) Older-First collector

OO time redatne 10 Apped

Experiment Results for pseudojbb

e Total execution time
1.3 . ,

1.25 -

P
-

Ln

—

o
Ln

Total dme relative © Appel

0.85 ' : '
1 1.25 1.5 2 2.5 3

Heap size relative to minimum heap size (og)

(a) Generational collector

Experiment Results for pseudojbb

e Total execution time

Total tme relatve © Appe|

12

—
—r

—r

0@

0.8

0.6

1.25 1.5 2 2.5
Heap sze relative to mmnimum heap size (log)

(b) Older-First collector

33

Experiment Results for pseudojbb

e GC time as fraction of total execution time
(Appel collector)

D.5
0.45
0.4
0.35
0.3
0.25
D.2
015
0.1
0.05
0

GG time £ Total fme

| | 1 1 | |
1 1.25 1.5 2 2.5 3
Heap size relative to minamum heap size (og)

Experiment Results for All Benchmarks

e Total execution time: OF outperforms SS and
Gen (e.g., SPEC 201 compress)

1.2

1.15
1.1 S

1.05

tme relative to Apped

0.95

Total

0.85

0.8 +]]]]]

Heap size relative to minimum heap size (kog) 35

Experiment Results for All Benchmarks

e Mark/cons ratio: OF outperforms SS and Gen in 7
out of 10 benchmarks (e.g., SPEC 209 db)

i]
I ,"'H't I I I i -I--:-:---
ol T Y gen --H
T T— —t - % of —— _|
i'}) " 15"':-;
R - T
£ ¥ 3 . A
3 i) . e ..__-' "-.
-E o n \
e [
2 o [S . A
E! e, .II --"._' ..\-.- | -
5 " -
=] e M
w o
ot A W--H _I___--'|-_+"‘-F'f.
I:l | | | | | |

Heap size relative to minimum heap sze (log) 36

Experiment Results for All Benchmarks

e Mutator ut

Mrator LRIgaton Avg

1

0.9 -

0.5 -

07 |-

0.6 -

0.S -

04 -

0.3

0.2 -

0.1

ilization vs. Maximum pause time

£ ||

10000

PRI | " M M M PRI |
100000 e+l
Madmum pause time {microsaconds)

ey

37

Experiment Results for All Benchmarks

e MMU (Minimum Mutator Utilization): OF
outperforms SS, Gen, and Appel in 6 out of 10

benchmark

1

0.3

0.8

KK

02
0.2 F

u] . M
100000

1e+0d 1e+07 1e+08
Granudarty (microseconds) (log) 38

Outline

Introduction

e Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]

Conclusion

39

Conclusion

e OF is proved to improve GC performance
(simulation and experimental results)

e Practical to avoid copying the very youngest
objects

e Better implementations of OF are possible

40

	Age-Based Garbage Collection�Stefanovic, McKinley and Moss��Older-first Garbage Collection in Practice: �Evaluation in a Java Virtual Machine� Stefanovic, Hertz, Blackburn, McKinley and Moss
	幻灯片编号 2
	Outline
	Introduction
	Outline
	Age-Based Garbage Collection
	Age-Based Garbage Collection
	Age-Based Garbage Collection
	Age-Based Garbage Collection
	Older-First Window Motion Example
	Outline
	Benchmarks in [Paper 1]
	Estimating Copying Costs
	Estimating Copying Costs
	Estimating Copying Costs
	Estimating Copying Costs
	Write Barrier
	Estimating Total Costs: OF vs. 2G
	Example of Estimating Results
	Example of Estimating Results
	Outline
	Discussion of [Paper 1]
	Outline
	Problem Statement of [Paper 2]
	Outline
	Design and Implementation of the OF Collector
	Experimental Method
	Benchmarks in [Paper 2]
	Experiment Results for pseudojbb
	Experiment Results for pseudojbb
	Experiment Results for pseudojbb
	Experiment Results for pseudojbb
	Experiment Results for pseudojbb
	Experiment Results for pseudojbb
	Experiment Results for pseudojbb
	Experiment Results for All Benchmarks
	Experiment Results for All Benchmarks
	Experiment Results for All Benchmarks
	Experiment Results for All Benchmarks
	Outline
	Conclusion

