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e [Paper 1]: Age-Based Garbage Collection
— New GC algorithm: Older-First algorithm (Age-Based)
— Comparison of several garbage collectors by simulation

e [Paper 2]: Older-First Garbage Collection in
Practice: Evaluation in a Java Virtual Machine

— Implementation of Older-First algorithm
— Comparison of several garbage collectors
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Introduction

e Generational Collector (traditional)
— Younger generations are frequently examined

— What if objects do not have enough time to die? (e.q.,
the very youngest objects)

— Copying cost!
e Older-First Collector (proposed in [paper 1])
— Older generations are frequently examined
— Lower copying cost, but higher pointer tracking cost!

e |f total cost is copying + pointer tracking, Older-
First performs better!
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Age-Based Garbage Collection

e Youngest-Only Collection (YO)
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Age-Based Garbage Collection

e Generational (Youngest-Only) Collection
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Age-Based Garbage Collection

e Oldest-Only Collection (OO)
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Age-Based Garbage Collection

e Older-First Collection (OF)
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Older-First Window Motion Example
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Benchmarks in [Paper 1]

e Refer to Table 1 for benchmark properties
e Based on Object-Oriented languages

e Java
— JavaBYTEmark, Bloat-Bloat, and Toba

e Smalltalk

— StandardNonlnteractive, HeapSim, Lambda-Fact5,
Lambda-Fact6, Swim, Tomcatv, Tree-Replace-Binary,
Tree-Replace-Random, and Richards
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Estimating Copying Costs
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Estimating Copying Costs
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Estimating Copying Costs
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Estimating Copying Costs

Mark/cons ratio
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Write Barrier

e Rule: just remember a cross-block pointer whose
target will fall into the collected region earlier

than its source
e Directional filtering of pointer stores
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Estimating Total Costs: OF vs. 2G

e Total cost = Copying cost + Pointer-tracking cost

e OF outperforms on some benchmarks

— JavaBYTEmark, StandardNonInteractive, HeapSim,
Lambda-Fact5, Lambda-Fact6, and Richards

e OF and 2G have similar performance on the
remaining benchmarks
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Example of Estimating Results

e Total collection cost: Lambda-Fact6
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Example of Estimating Results

e Total collection cost: Bloat-Bloat
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Discussion of [Paper 1]

e Comparing Collectors

— OF achieves lower total costs than 2G in many cases

e Pointer Tracking

— OF gets higher cost here, but not excessive

e Caching and memory effects

— OF visits the entire heap more regularly
e [ocality in cache?
e Paging?
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Problem Statement of [Paper 2]

e Validate the simulation model in [paper 1]

e Compare execution times and copying ratios
of OF and Generational collectors

e Explore pause times and the total collection
time tradeoff

23



Outline

Introduction

e Age-Based Garbage Collection

Simulation Results of [Paper 1]

Discussion of [Paper 1]

Problem Statement of [Paper 2]
Experimental Design and Results of [Paper 2]
Conclusion

24



Design and Implementation of the OF Collector

e Frame: maximum object size, minimum unit of
collection

e TOD (Time-of-Death): representing the age for
each frame, indicating the frame’s position in the
larger logical address

e Write Barrier: just remember a cross-block
pointer whose target block’s frame has a smaller
TOD value than its source block’s frame
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Experimental Method

e Collector Families

— Generational
e Appel: 2G collector with variable nursery size
e Gen (2G) and OF collectors with fixed window size

— Non-generational
e Semi-space (S5S)
e Environment

— Jikes RVM 2.0.3, Macintosh PowerMac G4 (PowerPC),
32KB L1 cache, 256KB L2 cache, 640MB memory,
Yellow Dog Linux2.1 (kernel 2.4.10)

* Metrics: mark/cons ratio, execution time
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Benchmarks in [Paper 2]

e Refer to Table 1 for benchmark properties

e Ten Benchmarks:

— SPEC_201 compress, SPEC_202_jess,
SPEC 205 raytrace, SPEC 209 db, SPEC 213 javac,
SPEC 222 mpegaudio, SPEC 228 mtrt,
SPEC_228 jack, pseudojbb, pseudojBYTEmark
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Experiment Results for pseudojbb

e Mark/cons ratio
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Experiment Results for pseudojbb

e Mark/cons ratio
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Experiment Results for pseudojbb

e Garbage collection time
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Experiment Results for pseudojbb

e Garbage collection time
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Experiment Results for pseudojbb

e Total execution time
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Experiment Results for pseudojbb

e Total execution time
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Experiment Results for pseudojbb

e GC time as fraction of total execution time
(Appel collector)
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Experiment Results for All Benchmarks

e Total execution time: OF outperforms SS and
Gen (e.g., SPEC 201 compress)
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Experiment Results for All Benchmarks

e Mark/cons ratio: OF outperforms SS and Gen in 7
out of 10 benchmarks (e.g., SPEC 209 db)
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Experiment Results for All Benchmarks

e Mutator ut
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Experiment Results for All Benchmarks

e MMU (Minimum Mutator Utilization): OF
outperforms SS, Gen, and Appel in 6 out of 10

benchmark
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Conclusion

e OF is proved to improve GC performance
(simulation and experimental results)

e Practical to avoid copying the very youngest
objects

e Better implementations of OF are possible
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