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Some Terminology

● Backing Store: The page file on the disk / Swap 
space

● Tenuring: When a Professor Object survives 
long enough that it will probably be around for a 
while 



  

Motivation

● Problems with GC
● Stop the World. 

– Can be fine for mainframes and long running process. 
Not so good for application that need a fast response 
time

● Current Algorithms do not know about Paging
– May place common objects on different pages
– May need to page in an object just to free it. 
– Paging is not a free lunch, and does not solve GC

● These are relevant issues to Personal 
Computing, and we want Smalltalk on every 
desktop!



  

Possible (Not)Solutions?

● Reference Counting: No pause times & no 
Paging issues
● Pause times come back if we want compaction
● Cyclic data structures need not apply. 

● Mark Sweep
● Scanning the objects thrashes the Page table.

● Scavenging (Incremental Semi Space)
● Possible solution! But not as fast as we would like. 

Still not very Paging friendly. 
● Not as fast as we would like



  

Tools

● Empirical observations we can apply 
● Most objects are short lived, Generational

– Idea! New objects should never be paged out until they 
get promoted to an old generation. 

● We tend to allocate objects at a stead state. 
– Translates to reclaiming an average 7/8th of a byte per 

instruction
● Exploit regression to the mean. If we just allocated an abnormally 

large number of objects, we can continue at the normal speed 
and be fine. 



  

Solution: Generation Scavenging

● Segregate objects into Old and New. 
● Many modal → Bi Modal. 
● Old → New references get added to a remembered 

set (RS)
– Stack Frames are always New
– All live objects in the New space are a children of RS or 

registers
● If an New object survives enough times, it gets 

tenured. 
● New Space is collected by Scavenging, Old space 

by Mark & Sweep
– Starting to combine algorithms to get the best of both 

worlds (Immix combines 3 to get the best of 3 worlds)
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Why its better. 

● Collection Time
● New space is O(# Live Objects)
● Old space is O(# Dead Object)

● Pause times small enough to be unnoticeable 
for Personal computes [But not for real-time 
applications]

● Spend the least time doing GC work
● 1.5% of CPU time, opposed to  7% for Semi Space 

and 15% for Reference Counting

● Lower Memory use then Backer's



  

Caveat Lector: “Let the read beware”

● Implementation does not actually lock the 
pages for the New space

● Performance artificially inflated by slower 
Smalltalk runtime 

● Tenuring problem, some people objects get 
tenure even though they become garbage 
soon. 



  

Hardware Support

● Building a CPU (SOAR) with special 
instructions to make Smalltalk faster
● Jazelle: ARM support for Java byte codes
● The added instructions are tailored to their Smalltalk 

implementation



  

Strengths

● Lots of statistics, a small amount of theoretical 
work added in (Predicting CPU time without 
running it on the hardware..) 

● Good idea, start of Nursery and Old generation 
concept (opposed to just generational). 



  

Weaknesses

● Source of statistics are not explained, what test 
applications were run? 

● No mention of the parameters used, let alone 
the method of determination

●  No mention of the weaknesses or short falls in 
their method
● Old generation is Mark Sweep, and will still cause 

page faults. 
● Pathologically bad types of programs? 


