

Generation Scavenging: A Non-
disruptive High Performance

Storage Reclamation Algorithm

Presented by Edward Raff

Some Terminology

● Backing Store: The page file on the disk / Swap
space

● Tenuring: When a Professor Object survives
long enough that it will probably be around for a
while

Motivation

● Problems with GC
● Stop the World.

– Can be fine for mainframes and long running process.
Not so good for application that need a fast response
time

● Current Algorithms do not know about Paging
– May place common objects on different pages
– May need to page in an object just to free it.
– Paging is not a free lunch, and does not solve GC

● These are relevant issues to Personal
Computing, and we want Smalltalk on every
desktop!

Possible (Not)Solutions?

● Reference Counting: No pause times & no
Paging issues
● Pause times come back if we want compaction
● Cyclic data structures need not apply.

● Mark Sweep
● Scanning the objects thrashes the Page table.

● Scavenging (Incremental Semi Space)
● Possible solution! But not as fast as we would like.

Still not very Paging friendly.
● Not as fast as we would like

Tools

● Empirical observations we can apply
● Most objects are short lived, Generational

– Idea! New objects should never be paged out until they
get promoted to an old generation.

● We tend to allocate objects at a stead state.
– Translates to reclaiming an average 7/8th of a byte per

instruction
● Exploit regression to the mean. If we just allocated an abnormally

large number of objects, we can continue at the normal speed
and be fine.

Solution: Generation Scavenging

● Segregate objects into Old and New.
● Many modal → Bi Modal.
● Old → New references get added to a remembered

set (RS)
– Stack Frames are always New
– All live objects in the New space are a children of RS or

registers
● If an New object survives enough times, it gets

tenured.
● New Space is collected by Scavenging, Old space

by Mark & Sweep
– Starting to combine algorithms to get the best of both

worlds (Immix combines 3 to get the best of 3 worlds)

New Area
Past Survivor SpaceNew Space

Future Survivor Space

New Area
Past Survivor SpaceNew Space

Future Survivor Space

New Area
Past Survivor SpaceNew Space

Future Survivor Space

New Area
Past Future Survivor SpaceNew Space

Future Past Survivor Space

Why its better.

● Collection Time
● New space is O(# Live Objects)
● Old space is O(# Dead Object)

● Pause times small enough to be unnoticeable
for Personal computes [But not for real-time
applications]

● Spend the least time doing GC work
● 1.5% of CPU time, opposed to 7% for Semi Space

and 15% for Reference Counting

● Lower Memory use then Backer's

Caveat Lector: “Let the read beware”

● Implementation does not actually lock the
pages for the New space

● Performance artificially inflated by slower
Smalltalk runtime

● Tenuring problem, some people objects get
tenure even though they become garbage
soon.

Hardware Support

● Building a CPU (SOAR) with special
instructions to make Smalltalk faster
● Jazelle: ARM support for Java byte codes
● The added instructions are tailored to their Smalltalk

implementation

Strengths

● Lots of statistics, a small amount of theoretical
work added in (Predicting CPU time without
running it on the hardware..)

● Good idea, start of Nursery and Old generation
concept (opposed to just generational).

Weaknesses

● Source of statistics are not explained, what test
applications were run?

● No mention of the parameters used, let alone
the method of determination

● No mention of the weaknesses or short falls in
their method
● Old generation is Mark Sweep, and will still cause

page faults.
● Pathologically bad types of programs?

