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Outline

e Canonical tracing garbage collectors

® Each sacritice one objective
® Describe mark—region

® [mmix
® Combine mark—region and oppor tunistic defragmentation

® [llustrate with figures!

o Implementation

® Results

Youngjoon Jo /




Canonical Collectors
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Canonical Collectors

Space Efficiency Fast Reclamation Mutator

Performance
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Canonical Collectors

Mutator Performance

Bump Pointer Locality

Mark-Compact

Copying
Does both
(every object
| either marked
or copied)
In One Pass

Space efficiency Fast Collection
Mark-Sweep
2
Image from Curtis Dunham’s slides, CS 395T (@ U Texas
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Mark Region
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« Contiguous allocation into regions
v Excellent locality
— For simplicity, objects cannot span regions

« Simple mark phase (like mark-sweep)
— Mark objects and their containing region

 Unmarked regions can be freed

Image from Blackburn’s slides
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lmmix

¢ Two levels of region sizing
® 32KB blocks (256 lines per block)
e 128B lines

* Allocation policy
® Recycle partially marked blocks first
® Allocate into free blocks last

* Opportunistic defragmentation

® Evacuate fragmented blocks (in order of most holes)

® Conservative line marking

* Avoid looking up object size for small objects (< 128B)
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Immix lllustration
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Opportunistic Defragmentation

o Apply opportunistically when
® Unused recyclable blocks available

® Previous collection did not yield enough space

® Mark source blocks at start of collection
® Select blocks in order of most holes

® Select as many blocks as possible based on space estimates

® Use same allocation mechanism as mutator

® Evacuate during marking
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Defragmentation lllustration

u 8
4

Recyclable Block




Defragmentation lllustration
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Defragmentation lllustration
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Defragmentation lllustration
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Defragmentation lllustration
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Defragmentation lllustration
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Defragmentation lllustration
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Defragmentation lllustration
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Defragmentation lllustration

] (0] 7] —
o

T




Defragmentation lllustration
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Defragmentation lllustration
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More Implementation

¢ Overtlow Allocation
® Medium objects larger than line often skip holes

® If current hole cannot accommodate, allocate in new block

¢ Parallel but not concurrent

° Synchronized global allocator gives blocks to unsynchronized

thread-local allocator

® Use bytes for line marks (instead of bits)
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More Implementation

* Large objects (>8KB) handled separately

® Each block accommodates at least four immix objects

® Metadata in heap
® 1B per line, 4B per block = 260B/32KB = 0.8%

® Supports pinning
* Important feature of CH

¢ Headroom for defragmentation
® ) .5% of heap
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Evaluation

20 Benchmarks

DaCapo
SPECjvm98
SPEC jbb2000

Methodology

MMTk

Jikes RVM 2.9.3
(Perf = HotSpot 1.5)

Replay compiler
Discard outliers
Report 95t %ile

Collectors

Full Heap
Immix
MarkSweep
MarkCompact
SemiSpace
Generational
GenIX
GenMS
GenCopy
Sticky
StickyIX

StickyMS

Image from Blackburn’s slides
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Hardware

Core 2 Duo

2.4GHz, 32KB L1,
4MB L2, 2GB RAM

AMD Athlon
3500+

2.2GHz, 64KB L1,
512KB L2, 2GB
RAM

PowerPC 970

1.6GHz, 32KB L1,
512KB L2, 2GB
RAM
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GC Time
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Total Time
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InNimum Heap
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Generational Performance
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Conclusion

Mutator Good Minimum Heap Space
locality efficient
Q
E S
2 2
* “
Space
Garbage Collection Total Performance
Simple, E)f(cellent MarkSweep
o) very fast o PEFTOrMAance yarkcompact
£ collection || £ SemiSpace
= \ = Immix
Space Space

Actual data, taken from geomean of DaCapo, jvm98, and jbb2000 on 2.4GHz Core 2 Duo
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Thoughts

® Can Immix be made concurrent (e.g. “real time”)?
® What about longer benchmarks?
® OLTP equivalent for Java?

. Defragmentation candidate selection?

® What is the initial available space?

© Defragmenting more often should help mutator locality

® Could it become a net win for total performance?
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