Immix: A Mark-Region Garbage Collector
with Space Efficiency, Fast Collection,

and Mutator Performance

Stephen Blackburn and Kathryn S. McKinley
PLDI 2008

Youngjoon Jo
February 9™ 2012
CSe661

Outline

e Canonical tracing garbage collectors

® Each sacritice one objective
® Describe mark—region

® [mmix
® Combine mark—region and oppor tunistic defragmentation

® [llustrate with figures!

o Implementation

® Results

Youngjoon Jo /

Canonical Collectors

Mark-Sweep [McCarthy 1960] Sweep-to-Free

[D Frealist + traﬁ +[sweep-to-f5eO [[-][|]D DD]
Compact

Mark-Compact istyger 19671
o CD&s 00

L

Bump allocation + trace + compact

[D] [D : / Evacuate

Semi-Space [Cheney 1970]
Bump allocation + trace + evacuate
00 | oo J

Image from Blackburn’s slides

@ Youngjoon Jo

13-

B

Canonical Collectors

Space Efficiency Fast Reclamation Mutator

Performance

MackCompset || [N IS T

@ Youngjoon Jo

Canonical Collectors

Mutator Performance

Bump Pointer Locality

Mark-Compact

Copying
Does both
(every object
| either marked
or copied)
In One Pass

Space efficiency Fast Collection
Mark-Sweep
2
Image from Curtis Dunham’s slides, CS 395T (@ U Texas
Youngjoon Jo ' /

Mark Region

(000008) 000|000000000C 000

e

« Contiguous allocation into regions
v Excellent locality
— For simplicity, objects cannot span regions

« Simple mark phase (like mark-sweep)
— Mark objects and their containing region

 Unmarked regions can be freed

Image from Blackburn’s slides

@ Youngjoon Jo

lmmix

¢ Two levels of region sizing
® 32KB blocks (256 lines per block)
e 128B lines

* Allocation policy
® Recycle partially marked blocks first
® Allocate into free blocks last

* Opportunistic defragmentation

® Evacuate fragmented blocks (in order of most holes)

® Conservative line marking

* Avoid looking up object size for small objects (< 128B)

Youngjoon Jo E
(- v

Immix lllustration

| |

t t

Bump Limit

Pointer Pointer

Immix lllustration

111

t t

Immix lllustration

Immix lllustration

Immix lllustration

Immix lllustration

&

O

;> 9

Immix lllustration

[—.‘.‘.‘O .‘Q'O
O—T0 00O 1@
Recyclabl.

Free Block

O
®
®

o0 o
Recycla ble Block

;> 9

Immix lllustration

&

O

;> 9

oo

Immix lllustration

O

;> 9

ULy L

Immix lllustration

_N [

O

;> 9

t1

Immix lllustration

UL DL)

O
®
®
®
®
®
;> 9

Immix lllustration

(R RRIII

;> 9

Immix lllustration

L L i

Immix lllustration

i
UL WL L

Opportunistic Defragmentation

o Apply opportunistically when
® Unused recyclable blocks available

® Previous collection did not yield enough space

® Mark source blocks at start of collection
® Select blocks in order of most holes

® Select as many blocks as possible based on space estimates

® Use same allocation mechanism as mutator

® Evacuate during marking

@ Youngjoon Jo

Defragmentation lllustration

u 8
4

Recyclable Block

Defragmentation lllustration

n .

1

[INNRIICINERRER

ITRRIIITRRy

T

T

Defragmentation lllustration

RN
WLLmne gy

Ft

Defragmentation lllustration

IR IRy
ITERRITRENE

ft

Defragmentation lllustration

IRl I R{ss
ITERRITTTE

Defragmentation lllustration

IRl I R{ss
TRRRI T RE AT

1‘ r

Defragmentation lllustration

L] [

ITERRITTTE

Defragmentation lllustration

] (1] |7 ——
o

T

Defragmentation lllustration

] (0] 7] —
o

T

Defragmentation lllustration

| (dl] | L

e

Defragmentation lllustration

| TN
e

T

More Implementation

¢ Overtlow Allocation
® Medium objects larger than line often skip holes

® If current hole cannot accommodate, allocate in new block

¢ Parallel but not concurrent

° Synchronized global allocator gives blocks to unsynchronized

thread-local allocator

® Use bytes for line marks (instead of bits)

@ Youngjoon Jo

More Implementation

* Large objects (>8KB) handled separately

® Each block accommodates at least four immix objects

® Metadata in heap
® 1B per line, 4B per block = 260B/32KB = 0.8%

® Supports pinning
* Important feature of CH

¢ Headroom for defragmentation
®) .5% of heap

Youngjoon Jo

Evaluation

20 Benchmarks

DaCapo
SPECjvm98
SPEC jbb2000

Methodology

MMTk

Jikes RVM 2.9.3
(Perf = HotSpot 1.5)

Replay compiler
Discard outliers
Report 95t %ile

Collectors

Full Heap
Immix
MarkSweep
MarkCompact
SemiSpace
Generational
GenIX
GenMS
GenCopy
Sticky
StickyIX

StickyMS

Image from Blackburn’s slides

Young] oon Jo

Hardware

Core 2 Duo

2.4GHz, 32KB L1,
4MB L2, 2GB RAM

AMD Athlon
3500+

2.2GHz, 64KB L1,
512KB L2, 2GB
RAM

PowerPC 970

1.6GHz, 32KB L1,
512KB L2, 2GB
RAM

=l

1.35
~~
o
9 1.3
©
& 1.25
|
(=]
Z 1.2
N
Q
£ 1.15
=
= 1.1 - ——
o —_——
©
+ 1.05
=
=
1 T T T -
1 2 3 4 5 6
Heap Size (Normalized)
—=MarkSweep =—=—MarkCompact =—=SemiSpace ==Immix
Geomean of DaCapo, jvm98 and jbb2000 on 2.4GHz Core 2 Duo
Image from Blackburn’s slides

@ Youngjoon Jo

GC Time

35 ‘
\
5 30 \
)
N
= 25
£
:c-, 20
Z
~ 15
£
= 10 - _
O
® 5
0 T T T T 1
1 2 3 4 5 6
Heap Size (Normalized)
——=MarkSweep =—=MarkCompact ==—=SemiSpace =—=Immix

Geomean of DaCapo, jvm98 and jbb2000 on 2.4GHz Core 2 Duo

Image from Blackburn’s slides

@ Youngjoon Jo

Total Time

2
Lo |

[T = = T = T = T =
N W M U1 OO N @©

Total Time (Normalized)

[y
[y

I I ‘#1

1 2 3 4 5 6
Heap Size (Normalized)

=

——=MarkSweep =——MarkCompact =—=SemiSpace =—=Immix

Geomean of DaCapo, jvm98 and jbb2000 on 2.4GHz Core 2 Duo

Image from Blackburn’s slides

@ Youngjoon Jo

InNimum Heap

M

ESemiSpace EImmix

@ MarkSweep ©MarkCompact

Image from Blackburn’s slides

Youngjoon Jo

Generational Performance

—
-
N

-
=

=
o
0

=
o
(0))

=
o
s

Total Time (Normalized)

—
o
N

=

=

2 3 4 5 6
Heap Size (Normalized)

=—=GenMS (Production) =——GenIX =—GenSS

Geomean of DaCapo, jvm98 and jbb2000 on 2.4GHz Core 2 Duo

@ Youngjoon Jo

Conclusion

Mutator Good Minimum Heap Space
locality efficient
Q
E S
2 2
* “
Space
Garbage Collection Total Performance
Simple, E)f(cellent MarkSweep
o) very fast o PEFTOrMAance yarkcompact
£ collection || £ SemiSpace
= \ = Immix
Space Space

Actual data, taken from geomean of DaCapo, jvm98, and jbb2000 on 2.4GHz Core 2 Duo

Youngjoon Jo

Thoughts

® Can Immix be made concurrent (e.g. “real time”)?
® What about longer benchmarks?
® OLTP equivalent for Java?

. Defragmentation candidate selection?

® What is the initial available space?

© Defragmenting more often should help mutator locality

® Could it become a net win for total performance?

Youngjoon Jo E /

