A Non-recursive List Compacting
Algorithm

C. J. CHENEY

Introduction

»Recursive list compacting algorithms presented by

- Hansen

- Fenichel and Yochelson

»Chenny presents a Non-recursive list compacting algorithm

- The function COPYLIST copies list in the CDR direction
- List pointers copied without transformation
- Perform a linear scan of the new list area

- When a list pointer is encountered invoke COPYLIST to copy the sublist

Thursday, February 9, 12

Cheney’s Algorithm

3

HEAD SATB] [> M

N

HEAD NN =) e I M

/|

HEAD o[T T [es M old list

T ; ; area
e 1 -
Dol new list

HEAD > A 3 C / area

SCANT NEXTT

Thursday, February 9, 12

HEAD ST R SSUN R R SOSN /‘ old list

g 5 area
B k) -
ool new list
HEAD > A|B|C / area
SCANT NEXTT

HEAD ST I I SSSN i I SN M old list

T 5 area
=1 L
R Y e | new list
HEAD S AIBIC // / area
SCANT NEXTT

Thursday, February 9, 12

HEAD

HEAD

HEAD

HEAD

< T e e » | m-f---- >
s
Sl 5
v v v V’L_f"
> AIBIC / /
SCANT NEXTT
> I I Pl o | ==F=--- >
—— 5
Ql v v Q//’L_p"--"
> AIB|C / /
SCAN
NEXT

old list
area

new list
area

old list
area

new list
area

Thursday, February 9, 12

Questions?

7

»What's the importance in having a non-recursive algorithm?

Thursday, February 9, 12

List Processing in Real Time on a
Serial Computer

Henry G. Baker Jr.

Problem Statement
o}

»Three main problems with list processing systems

- Usually interpreted hence slow
- Used inefficient storage structure

- Long pauses for GC (Could be days for large Database programs)

»First two issues can be fixed by compiling

» Paper targets third problem

Thursday, February 9, 12

Solution

» Baker’s algorithm (SRT - Serial Real-Time)

» Based on MFYCA's (Minsky-Feinchel-Yochelson-Cheney-
Arnborg) algorithm

» Basic idea: Do a little copying during each cons, rather than

a lot of copying infrequently
» Realtime: all operations in O(1) time

» Pretty good space efficiency

Thursday, February 9, 12

MFYCA algorithm

»A semispace copying algorithm
»Requires only one pass

»Does not require a collector stack

- Avoided through the use of S (Scan) and B (Bottom) pointers

»Program sees addresses in to space

Thursday, February 9, 12

MFYCA: Initial (Post Flip)
-

@

|
L1

fromspace tospace

MFYCA: Copy Registers

13

fromspace tospace

MFYCA: Copying

14

fromspace tospace

MFYCA: Done

——

fromspace tospace

Baker’s Algorithm

»When tospace fills up, do a flip and copy only roots

» At each CONS, perform k iterations of the GC loop from
MFYCA

»Both semispaces now contain accessible cells

»Pretend GC completed at time of last flip

» Modify CAR, CDR: Follow forwarding addresses, move cells

found in from space and update pointers

»New cells placed at top of To Space

Thursday, February 9, 12

Baker’s Algorithm

2

» CAR, CDR can move cells before the collector has traced it

- Does that matter?

»How about REPLACA and RPLACD?

- REPLACA(p,q) - Suppose p is already traced and q is not
- REPLACA(p,q) - Suppose g is already traced and q is not
- REPLACA(p,q) - Suppose both traced or both not traced

Thursday, February 9, 12

Space requirements

»N - Number of accessible nodes

rk - Cells traced per CONS
» Maximum storage required <= N (2 + 2/k)

»Space can be reduced using CDR-coding

Thursday, February 9, 12

Space requirements

»Tradeoff between space and CONS speed by varying k

»For k > 4 space saving become insignificant

- Doubling k = 8 gives 10% savings bit doubles cons time

»Can even make k < 1

- With k = 1/3 need 4N storage but cons is much faster

»How about changing k dynamically?

Thursday, February 9, 12

Can we bound all operation?
N

»How do we handle user stacks®

- Can grow to a unbounded size (in theory)
»Can we have a bound on ARRAY-CONS and array accessing

function®

- Doubling k = 8 gives 10% savings bit doubles cons time

»Hash Tables?

Thursday, February 9, 12

Limitations

T

»Virtual memory machines not supported

- Cannot guarantee constant time

» Arbitrary size arrays not supported

» Multiple processes?

Thursday, February 9, 12

Discussion

»Paper focus a great deal on space requirement
»Size of working set?

»The “graph” of objects is traversed in breadth-first order

- True for both MFYCA and Baker

- What does this mean for locality?

»Read barrier overhead?

Thursday, February 9, 12

Conclusions

» Modification to MFYCA

»Realtime: all operations constant time

»Space efficiency and flexibility: can choose k for space-time

tradeoff

»Proof: Correct and doesn’t run out of space when it shouldn’t

Thursday, February 9, 12

Conclusions

» Modification to MFYCA

»Realtime: all operations constant time

»Space efficiency and flexibility: can choose k for space-time

tradeoff

»Proof: Correct and doesn’t run out of space when it shouldn’t

Thursday, February 9, 12

