
Data Flow Analysis and Optimizations

Last Time

• Optimizations with SSA

Today

• Data Flow Analysis

• Data Flow Frameworks

• Constant Propagation

• Reaching Definitions

CS502 Data Flow Frameworks 1

Data Flow Analysis

Data flow analysis tells us things we want to know about programs.

For example:

• Is this computation loop invariant?

• Which definition reaches this use?

• Is this value a constant?

Example:

B = 2

A = 3

C = A + B

X = true

if (X)

then else

A = 2

B = 3

CS502 Data Flow Frameworks 2

Data Flow Analysis

Systems of equations that compute information (e.g., uses, definitions, values)

about variables at program points.

A Monotone Data Flow Framework

• point - start and/or end of a basic block
• Information for a forward problem

INFOin(v) = mergep∈PRED(v)(INFOout(p))

INFOout(v) = transfer(INFOin(v))

• Transfer functions:

tv is transfer function for v, how information is changed by v.

TQ is transfer function for a path from Entry (information carried on path q)
Given Q: Entry →+ x, such that q= qo→ q1 → . . .qn, the transfer function is:

tqn−1(tqn−2(. . .(t2(t1(t0()))) . . .)

Meet Over All Paths Solution

MOP(v) = !q∈Paths(v)Tq())

CS502 Data Flow Frameworks 3

Data Flow Framework

1. A semilattice L with a binary meet operation !, such that a,b,c ∈ L :

• a!a= a (idempotent)

• a!b= b!a (commutative)

• a! (b! c) = (a!b)! c (associative)

2. ! imposes an order on L : ∀ a,b ∈ L

• a$ b⇔ a!b= b

• a& b⇔ a$ b and a '= b

3. A semilattice has a unique bottom element ⊥ : ∀a ∈ L

• a!⊥ = ⊥.

• a$⊥

4. It has a unique top or identity element) : ∀a ∈ L

• a!) = a

•)$ a

CS502 Data Flow Frameworks 4

Problem Representation

• Choose a semilattice L to represent facts

• Attach to each a ∈ L a meaning
each a ∈ L is a distinct a set of known facts

• With each node n, associate a function fn : L → L

fn models behavior of code corresponding to n

• Let F be the set of all functions the code generates

CS502 Data Flow Frameworks 5

Constant Propagation Example Framework

Constant propagation lattice:)

. . . -2 -1 0 1 2 . . .

⊥
1. meet rules

• a!) = a

• a!⊥ = ⊥
• a!a= a ⇐⇒ constant a and a= a

• a!b= ⊥otherwise
2. meet properties impose a partial order on L

• 3!3 = 3

• 3!2 = 2!3

• 3! (2!4) = (3!2)!4

3. bottom

• a!⊥ = ⊥ for every a ∈ L .

• ∀a ∈ L ,a$⊥
4. top

• a!) = a for every a ∈ L

• ∀a ∈ L ,)$ a

CS502 Data Flow Frameworks 6

Data Flow Framework

A descending chain in L is a sequence x1,x2, · · · ,xn:

1. xi ∈ L ,1 ≤ i≤ n, and

2. xi $ xi+1,1 ≤ i< n

If ∀a ∈ L ,∃ constant ba such that any chain beginning with a has length ≤ ba,

we say that L is bounded.

Any bounded semilattice has finite descending chains.

CS502 Data Flow Frameworks 7

Admissible Function Spaces [Kam & Ullman]

For a bounded semilattice L ,F : L → L is an admissible function space ⇐⇒

1. Monotonic:

∀ f ∈ F ,∀x,y ∈ L , x0 y⇒ f (x) 0 f (y)

2. Identity operation:

∃ fI ∈ F : ∀x ∈ L , fI(x) = x

3. Closed under composition:

f ,g ∈ F ⇒ f ◦g ∈ F

where ∀x ∈ L , [f ◦g](x) = f (g(x))

4. ⊥ exists to any x ∈ L

∀x ∈ L ,∃ a finite subset H ⊆ F 3 x= ! f∈H f (⊥)

CS502 Data Flow Frameworks 8

Monotone Data Flow Framework

is a triple 〈L ,!,F 〉 where

• ! is the meet operation, or confluence operator

• 〈L ,!〉 is a semilattice of finite length with bottom ⊥

• F is a monotone function space on L :

a set of unary functions such that each operation f ∈ F is monotonic:

∀ f ∈ F ,∀x,y ∈ L , x0 y⇒ f (x) 0 f (y)

A monotone data flow framework 〈L ,!〉 is distributive ⇐⇒

∀ f ∈ F ,∀x,y ∈ L , f (x! y) = f (x)! f (y)

Meet Over All Paths Solution

MOP(v) = !q∈Paths(v)Tq())

CS502 Data Flow Frameworks 9

Constant Propagation Example Framework

1. Is CP monotonic?

2. Is CP distributive?

3. Is every solution a meet over all paths solution?

B = 2

A = 3

A = 3

B = 2

C = A + B

if (X)

then else

CS502 Data Flow Frameworks 10

Constant Propagation Example Framework

1. Is CP monotonic?

Yes

2. Is CP distributive?

No

f (A+B) = 5

f (A)+ f (B) = 2!3+3!2 = ⊥

3. Is every solution a meet over all paths solution?

No

B = 2

A = 3

A = 3

B = 2

C = A + B

if (X)

then else

CS502 Data Flow Frameworks 11

Reaching Definitions

For each vertex, find the set of variable definitions that might reach that vertex.

GEN(v) variable v may be defined or assigned to

KILL(v) variable v is defined, overwriting other definitions

1 read N

2 call check(N)

3 i← 1

4 while i< N do

5 a[i] ← a[i]+ i

6 i← i+1

7 end

8 print a[n]

GEN KILL PRED SUCC

1 : N1 N 2

2 : N2 1 3

3 : i3 i 2 4

4 : 3,7 5,8

5 : a5 4 6

6 : i6 i 5 7

7 : 6 4

8 : 4

CS502 Data Flow Frameworks 12

Reaching Definitions: Transfer Function

IN(v) the set of definitions that reach statement v

IN(v) =
[

p∈PRED(v)

OUT(p)

OUT(v) the set of reaching definitions just after statement v

OUT(v) = GEN(v)∪ (IN(v)−KILL(v))

IN is an inherited attribute

OUT is a synthesized attribute

GEN and KILL are basic attributes

Forward data flow problems propagate from predecessors of v to v

Backward data flow problems propagate from successors of v to v

CS502 Data Flow Frameworks 13

Reaching Definitions

Monotone Data Flow Framework

• A = set of generations,
generation = (statement, variable)

• Lattice: L = 〈2A,∪〉

2A ≡ the set of all subsets of A

What does this look like?

• initial value = {}

• transfer function tv(x) = GEN(v)∪ (x−KILL(v))

• monotone: x⊆ y ⇒ tv(x) ⊆ tv(y)

• distributive: tv(x∪ y) = tv(x)∪ tv(y)

CS502 Data Flow Frameworks 14

Work List Iterative Algorithm

initialize ReachingDefinitions(n)

worklist ← the set of all nodes

while worklist '= {}

take n from worklist
recompute ReachingDefinitions(n)

if ReachingDefinitions(n) changed

worklist ← worklist ∪SUCC(n)

end

end

initialization

IN(v) ← {}

OUT(v) ← GEN(v)

computation

IN(v) =

OUT (v) =

CS502 Data Flow Frameworks 15

Reaching Definitions Algorithm

foreach v ∈V

IN(v) ← {}

OUT(v) ← GEN(v)

end

worklist ←V

while worklist '= {}

take v from worklist
IN(v) ←

S
p∈PRED(v)OUT(p)

OUT(v) ← GEN(v)
S

(IN(v)−KILL(v))

if OUT(v) changed

worklist ← worklist ∪SUCC(v)

end

end

CS502 Data Flow Frameworks 16

Reaching Definitions

For each vertex, find the set of variable definitions that might reach that vertex.

GEN(v) variable v may be defined or assigned to

KILL(v) variable v is defined, overwriting other definitions

1 read N

2 call check(N)

3 i← 1

4 while i< N do

5 a[i] ← a[i]+ i

6 i← i+1

7 end

8 print a[n]

GEN KILL PRED SUCC

1 : N1 N 2

2 : N2 1 3

3 : i3 i 2 4

4 : 3,7 5,8

5 : a5 4 6

6 : i6 i 5 7

7 : 6 4

8 : 4

CS502 Data Flow Frameworks 17

Reaching Definitions Example

Initial value iteration 1 iteration 2 iteration 3

IN OUT IN OUT IN OUT IN OUT

1

2

3

4

5

6

7

8

CS502 Data Flow Frameworks 18

Questions

• Does this always terminate?

• What answer does it compute?

• How fast (or slow) is it?

CS502 Data Flow Frameworks 19

Reaching Definitions Algorithm

foreach v ∈V

IN(v) ← {}

OUT(v) ← GEN(v)

end

worklist ←V

while worklist '= {}

take v from worklist
IN(v) ←

S
p∈PRED(v)OUT(p)

OUT(v) ← GEN(v)
S

(IN(v)−KILL(v))

if OUT(v)changed

worklist ← worklist ∪SUCC(v)

end

end

CS502 Data Flow Frameworks 20

Work List Iterative Algorithm

Questions

• Does this always terminate?

• How fast (or slow) is it?

• What answer does it compute?

• How fast can we make it?

CS502 Data Flow Frameworks 21

Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions:

1. each node is initialized to {}

2. a definition has only one statement that generates it

3. F is associative⇒ F is monotone⇒ each x ∈ reaching definitions can
be added once

4. N ∗ (E+1) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof?

CS502 Data Flow Frameworks 22

Correctness and Quality of Solution

Does it compute the answer we want?

Definition: For each basic block b

MOP(b) = !q∈Paths(b)Tq())

• Paths that reach a block are reachable in the control flow graph, which

may be conservative

• Perfect Solution = meet over real paths taken during program execution

• MOP≤ Perfect Solution

• In some sense, MOP is best feasible solution

• Not guaranteed to achieve MOP solution unless transfer functions

distributive

CS502 Data Flow Frameworks 23

Quality of Solution

Maximal Fixed Point (MFP)

• Any iterative data-flow problem that satisfies admissible function

requirements when it converges to a solution and terminates, will have

reached a Maximal Fixed Point solution

• MFP is unique, regardless of order of propagation

• If distributive, MFP=MOP

• Otherwise, MFP≤MOP

• So, MFP≤MOP≤ Perfect Solution

CS502 Data Flow Frameworks 24

How fast can we make the iterative algorithm?

Execution time of iterative framework

For each basic block: # successors (predecessors) + constant bit vector

operations

Number of visits to basic block: length of longest acyclic path

What is the complexity equation? O(n2)

Where is unnecessary work being performed?

• Iteration over every node on each pass

• Testing for altered sets on each pass

• Extra pass to detect stabilization

Problem: Nodes may be visited in any order

CS502 Data Flow Frameworks 25

Examples

1

2

3

4

1

2

3 4

CS502 Data Flow Frameworks 26

How fast can we make the iterative algorithm?

To avoid unnecessary work:

• Bound number of visits by visiting a node roughly after all its
predecessorsn

(reverse PostOrder for forward data-flow problem;

conceptually, PostOrder for backward problem)

• Change to algorithm:

changed ← false
do

foreach v ∈V in rPostOrder do

solve for b

if old '= new
changed ← true

end

end

while changed

• How does this improve performance?

CS502 Data Flow Frameworks 27

PostOrder and Reverse PostOrder

Step1: PostOrder

procmain() ≡
count ← 1

Visit(Entry)
end

proc Visit(v) ≡
mark v as visited

foreach successor s of v not yet visited

Visit(s)
end

PostOrder(v) ← count ++
end

Step 2: rPostOrder

foreach v ∈V do
rPostOrder(v) ←|V |−PostOrder(v)

end

Depth-first search ≈ rPostOrder

CS502 Data Flow Frameworks 28

Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

• the domain and its size

• size of a single fact

• forward or backward problem

• model of characteristic function

Representation

• Sets represented by bit vector

• Size of each bit vector:

Available Expressions: # distinct expressions in program

Reaching Definitions: # definitions in program

Live Variable Analysis: # variables in program

Complexity

• distinguish bit-vector steps from logical steps

• watch out for complex mappings (GEN → KILL)

CS502 Data Flow Frameworks 29

Summary

• Iterative data-flow framework used to solve global data-flow problems

• Use semi-lattice to represent facts

• Analysis on semi-lattice with finite descending chains and monotone

data-flow framework guarantees termination

• Monotonic data-flow framework guarantees MFP solution reached

• Distributive to guarantee MOP solution reached

• rPostOrder (or PostOrder) for “rapid” data-flow problems guarantees

bound of O(n(d+2)) complexity, where d is maximum number of

retreating edges on any acyclic path in the CFG (loop

“interconnectiveness”)

CS502 Data Flow Frameworks 30

