Data Flow Analysis and Optimizations

Last Time

• Optimizations with SSA

Today

• Data Flow Analysis
• Data Flow Frameworks
• Constant Propagation
• Reaching Definitions

Data Flow Analysis

Data flow analysis tells us things we want to know about programs. For example:

• Is this computation loop invariant?
• Which definition reaches this use?
• Is this value a constant?

Example:

```
if (X)
    X = true
else
    A = 3
    B = 2
    C = A + B
```

Data Flow Framework

1. A semilattice \(\mathcal{L} \) with a binary meet operation \(\sqcap \), such that \(a, b, c \in \mathcal{L} \):

 • \(a \sqcap a = a \) \hspace{2cm} (idempotent)
 • \(a \sqcap b = b \sqcap a \) \hspace{2cm} (commutative)
 • \(a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c \) \hspace{2cm} (associative)

2. \(\sqcap \) imposes an order on \(\mathcal{L} : \forall a, b \in \mathcal{L} \):

 • \(a \sqsupseteq b \iff a \sqcap b = b \)
 • \(a \sqsupseteq b \) and \(a \neq b \)

3. A semilattice has a unique bottom element \(\bot : \forall a \in \mathcal{L} \):

 • \(a \sqcap \bot = \bot \)
 • \(a \sqsupseteq \bot \)

4. It has a unique top or identity element \(\top : \forall a \in \mathcal{L} \):

 • \(a \sqcap \top = a \)
 • \(\top \sqsupseteq a \)

Meet Over All Paths Solution

\[MOP(v) = \sqcap_{q \in \text{Paths}(v)} T_q(\top) \]
Problem Representation

- Choose a semilattice \(L \) to represent facts
- Attach to each \(a \in L \) a meaning
 each \(a \in L \) is a distinct a set of known facts
- With each node \(n \), associate a function \(f_n : L \rightarrow L \)
 \(f_n \) models behavior of code corresponding to \(n \)
- Let \(F \) be the set of all functions the code generates

Constant Propagation

Constant propagation lattice:

\[
\begin{array}{cccccc}
\vdash & 2 & 1 & 0 & \vdash \\
\vdash & \vdash & \vdash & \vdash & \vdash \\
\vdash & \vdash & \vdash & \vdash & \vdash \\
2 & 1 & 0 & \vdash & \vdash \\
1 & 0 & \vdash & \vdash & \vdash \\
0 & \vdash & \vdash & \vdash & \vdash \\
\vdash & \vdash & \vdash & \vdash & \vdash \\
\end{array}
\]

1. meet rules
 - \(a \sqcap T = a \)
 - \(a \sqcap \bot = \bot \)
 - \(a \sqcap a = a \iff \text{constant } a \text{ and } a = a \)
 - \(a \sqcap b = \bot \text{ otherwise} \)
2. meet properties impose a partial order on \(L \)
 - \(3 \sqcap 3 = 3 \)
 - \(3 \sqcap 2 = 2 \sqcap 3 \)
 - \(3 \sqcap (2 \sqcap 4) = (3 \sqcap 2) \sqcap 4 \)
3. bottom
 - \(a \sqcap \bot = \bot \text{ for every } a \in L \).
 - \(\forall a \in L, a \geq \bot \)
4. top
 - \(a \sqcap T = a \text{ for every } a \in L \)
 - \(\forall a \in L, T \geq a \)

Admissible Function Spaces

For a bounded semilattice \(L, F : L \rightarrow L \) is an admissible function space \(\iff \)

1. Monotonic:
 \[\forall f \in F, \forall x, y \in L, x \leq y \Rightarrow f(x) \leq f(y) \]
2. Identity operation:
 \[\exists f_1 \in F : \forall x \in L, f_1(x) = x \]
3. Closed under composition:
 \[f, g \in F \Rightarrow f \circ g \in F \]
 \[\text{where } \forall x \in L, [f \circ g](x) = f(g(x)) \]
4. \(\bot \) exists to any \(x \in L \)
 \[\forall x \in L, \exists \text{ a finite subset } H \subseteq F \ni x = \cap f \in H f(\bot) \]
Monotone Data Flow Framework

is a triple \(\langle \mathcal{L}, \sqcap, \mathcal{F} \rangle \) where

- \(\sqcap \) is the meet operation, or confluence operator
- \(\langle \mathcal{L}, \sqcap \rangle \) is a semilattice of finite length with bottom \(\perp \)
- \(\mathcal{F} \) is a monotone function space on \(\mathcal{L} \):
 a set of unary functions such that each operation \(f \in \mathcal{F} \) is monotonic:
 \[
 \forall f \in \mathcal{F}, \forall x, y \in \mathcal{L}, x \leq y \Rightarrow f(x) \leq f(y)
 \]

A monotone data flow framework \(\langle \mathcal{L}, \sqcap \rangle \) is distributive \(\iff \)

\[
\forall f \in \mathcal{F}, \forall x, y \in \mathcal{L}, f(x \sqcap y) = f(x) \sqcap f(y)
\]

Meet Over All Paths Solution

\[
MOP(v) = \sqcap_{q \in \text{Paths}(v)} T_q(\top)
\]

Constant Propagation

Example Framework

1. Is CP monotonic?
 - Yes

2. Is CP distributive?
 - No

3. Is every solution a meet over all paths solution?
 - No

Reaching Definitions

For each vertex, find the set of variable definitions that might reach that vertex.

\(GEN(v) \) variable \(v \) may be defined or assigned to

\(KILL(v) \) variable \(v \) is defined, overwriting other definitions

```
1: read N
2: call check(N)
3: i <= 1
4: while i < N do
5:   a[i] := a[i] + i
6:   i := i + 1
7: end
8: print a[n]
```

<table>
<thead>
<tr>
<th>GEN</th>
<th>KILL</th>
<th>PRED</th>
<th>SUCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>i3</td>
<td>i</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>5</td>
<td>a5</td>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td>6</td>
<td>i6</td>
<td>i</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>6.4</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Reaching Definitions: Transfer Function

\[\text{IN}(v) = \bigcup_{p \in \text{PRE}(v)} \text{OUT}(p) \]

\[\text{OUT}(v) \text{ the set of reaching definitions just after statement } v \]

\[\text{IN}(v) = \text{GEN}(v) \cup (\text{IN}(v) - \text{KILL}(v)) \]

\text{IN} \text{ is an inherited attribute}

\text{OUT} \text{ is a synthesized attribute}

\text{GEN} \text{ and } \text{KILL} \text{ are basic attributes}

\textbf{Forward} \text{ data flow problems propagate from predecessors of } v \text{ to } v

\textbf{Backward} \text{ data flow problems propagate from successors of } v \text{ to } v

Reaching Definitions

\textbf{Monotone Data Flow Framework}

- \(A \) = set of generations, generation = (statement, variable)
- Lattice: \(\mathcal{L} = \langle 2^A, \cup \rangle \)
- \(2^A \equiv \) the set of all subsets of \(A \)
- What does this look like?
- initial value = {}
- transfer function \(t_v(x) = \text{GEN}(v) \cup (x - \text{KILL}(v)) \)
- monotone: \(x \subseteq y \Rightarrow t_v(x) \subseteq t_v(y) \)
- distributive: \(t_v(x \cup y) = t_v(x) \cup t_v(y) \)

Work List Iterative Algorithm

initialize \(\text{ReachingDefinitions}(n) \)

\text{worklist} \leftarrow \text{the set of all nodes}

\textbf{while} \text{ worklist} \neq \{ \}

- take \(n \) from \text{worklist}
- recompute \(\text{ReachingDefinitions}(n) \)
- if \(\text{ReachingDefinitions}(n) \) changed
- \text{worklist} \leftarrow \text{worklist} \cup \text{SUCC}(n)

\textbf{end}

\textbf{end}

initialization

\text{IN}(v) \leftarrow \{ \}

\text{OUT}(v) \leftarrow \text{GEN}(v)

computation

\text{IN}(v) = \quad \text{OUT}(v) = \quad
For each vertex, find the set of variable definitions that might reach that vertex.

\(\text{GEN}(v) \) variable \(v \) may be defined or assigned to

\(\text{KILL}(v) \) variable \(v \) is defined, overwriting other definitions

1. \textbf{read} \(N \)
2. \textbf{call} \(\text{check}(N) \)
3. \(i \leftarrow 1 \)
4. \textbf{while} \(i < N \) \textbf{do}
5. \quad \(a[i] \leftarrow a[i] + i \)
6. \quad \(i \leftarrow i + 1 \)
7. \textbf{end}
8. \textbf{print} \(a[N] \)

<table>
<thead>
<tr>
<th></th>
<th>GEN</th>
<th>KILL</th>
<th>PRED</th>
<th>SUCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(N_1)</td>
<td>(N)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>(N_2)</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>(i_3)</td>
<td>(i)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3,7</td>
<td>5,8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(a_5)</td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>(i_6)</td>
<td>(i)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Questions

- Does this always terminate?
- What answer does it compute?
- How fast (or slow) is it?
Correctness and Quality of Solution

Does it compute the answer we want?

Definition: For each basic block \(b \)

\[MOP(b) = \bigcap_{q \in \text{Paths}(b)} T_q(\top) \]

- Paths that reach a block are reachable in the control flow graph, which may be conservative
- Perfect Solution = meet over real paths taken during program execution
- \(MOP \leq \) Perfect Solution
- In some sense, \(MOP \) is best feasible solution
- Not guaranteed to achieve \(MOP \) solution unless transfer functions distributive

Quality of Solution

Maximal Fixed Point (MFP)

- Any iterative data-flow problem that satisfies admissible function requirements when it converges to a solution and terminates, will have reached a Maximal Fixed Point solution
- \(MFP \) is unique, regardless of order of propagation
- If distributive, \(MFP = MOP \)
- Otherwise, \(MFP \leq MOP \)
- So, \(MFP \leq MOP \leq \) Perfect Solution

Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions:

1. each node is initialized to \(\{ \} \)
2. a definition has only one statement that generates it
3. \(\mathcal{F} \) is associative \(\Rightarrow \) \(\mathcal{F} \) is monotone \(\Rightarrow \) each \(x \in \text{reaching definitions} \) can be added once
4. \(N \times (E + 1) \) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof?
How fast can we make the iterative algorithm?

To avoid unnecessary work:
- Bound number of visits by visiting a node roughly after all its predecessors
 (reverse PostOrder for forward data-flow problem; conceptually, PostOrder for backward problem)
- Change to algorithm:

  ```
  changed ← false
  do
    foreach \( v \in V \) in rPostOrder do
      solve for \( b \)
      if \( \text{old} \neq \text{new} \)
        changed ← true
      end
  end
  while changed
  ```
- How does this improve performance?

Examples

PostOrder and Reverse PostOrder

Step 1: PostOrder

```latex
\textbf{proc} \text{main()} \equiv
\text{count} ← 1
Visit(\text{Entry})
\textbf{end}
```

```latex
\text{proc} \text{Visit}(v) \equiv
\text{mark} v \text{ as visited}
\textbf{foreach} \text{successor} \( s \) of \( v \) not yet visited
Visit(\( s \))
\textbf{end}
PostOrder(\( v \)) ← \text{count} + +
\textbf{end}
```

Step 2: rPostOrder

```
\textbf{foreach} \( v \in V \) do
  rPostOrder(\( v \)) ← | V | - PostOrder(\( v \))
\textbf{end}
```

Depth-first search \(\approx \) rPostOrder
Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

- the domain and its size
- size of a single fact
- forward or backward problem
- model of characteristic function

Representation

- Sets represented by *bit vector*
- **Size of each bit vector:**
 - **Available Expressions:** # distinct expressions in program
 - **Reaching Definitions:** # definitions in program
 - **Live Variable Analysis:** # variables in program

Complexity

- distinguish bit-vector steps from logical steps
- watch out for complex mappings (\textit{GEN} \rightarrow \textit{KILL})

Summary

- Iterative data-flow framework used to solve global data-flow problems
- Use semi-lattice to represent facts
- Analysis on semi-lattice with finite descending chains and monotone data-flow framework guarantees termination
- Monotonic data-flow framework guarantees \textit{MFP} solution reached
- Distributive to guarantee \textit{MOP} solution reached
- \textit{rPostOrder} (or \textit{PostOrder}) for "rapid" data-flow problems guarantees bound of $O(n(d + 2))$ complexity, where d is maximum number of retreating edges on any acyclic path in the CFG (loop "interconnectiveness")