Data Flow Analysis and Optimizations

Last Time

Optimizations with SSA

Today

- Data Flow Analysis
- Data Flow Frameworks
- Constant Propagation
- Reaching Definitions

CS502

Data Flow Frameworks

Data Flow Analysis

Systems of equations that compute information (e.g., uses, definitions, values) about variables at program points.

A Monotone Data Flow Framework

- point start and/or end of a basic block
- Information for a forward problem

$$\begin{aligned} \mathsf{INFO}_{in}(v) &= \mathsf{merge}_{p \in PRED(v)}(\mathsf{INFO}_{out}(p)) \\ \mathsf{INFO}_{out}(v) &= \mathsf{transfer}(\mathsf{INFO}_{in}(v)) \end{aligned}$$

• Transfer functions:

 t_v is transfer function for v, how information is changed by v.

 T_Q is transfer function for a path from *Entry* (information carried on path q) Given Q: *Entry* $\rightarrow^+ x$, such that $q = q_o \rightarrow q_1 \rightarrow \dots q_n$, the **transfer function** is:

$$t_{q_n-1}(t_{q_n-2}(\dots(t_2(t_1(t_0(\top)))\dots))))$$

Meet Over All Paths Solution

$$MOP(v) = \sqcap_{q \in Paths(v)} T_q(\top)$$

Data Flow Analysis

Data flow analysis tells us things we want to know about programs. For example:

- Is this computation loop invariant?
- Which definition reaches this use?
- Is this value a constant?

Example:

CS502

Data Flow Frameworks

2

Data Flow Framework

1. A semilattice \mathcal{L} with a binary meet operation \sqcap , such that $a, b, c \in \mathcal{L}$:

• $a \sqcap a = a$	(idempotent)
• $a \sqcap b = b \sqcap a$	(commutative)
• $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$	(associative)

- 2. \sqcap imposes an order on \mathcal{L} : $\forall a, b \in \mathcal{L}$
 - $a \succeq b \Leftrightarrow a \sqcap b = b$
 - $a \succ b \Leftrightarrow a \succeq b$ and $a \neq b$
- 3. A semilattice has a unique *bottom* element \bot : $\forall a \in L$
 - $a \sqcap \bot = \bot$.
 - $a \succeq \bot$
- 4. It has a unique *top* or *identity* element \top : $\forall a \in \mathcal{L}$
 - $a \sqcap \top = a$
 - $\top \succeq a$

CS502

3

Problem Representation

									WOIN
• Choose a semilattice \mathcal{L} to represent facts			Constant propagati	on lattice:			Т		
					-2	-1	0 1	2	
A I							\perp		
 Attach to each 	ch $a \in \mathcal{L}$ a meaning		 meet rules 						
each $a \in \mathcal{L}$ is	s a distinct a set of known facts		• $a \sqcap \top = a$						
			• $a \sqcap \bot = \bot$						
			• $a \sqcap a = a \Leftarrow$	\Rightarrow constant <i>a</i> and <i>a</i> = <i>a</i>					
 With each no 	ode <i>n</i> , associate a function $f_n : \mathcal{L} \to \mathcal{L}$		• $a \sqcap b = \bot \text{oth}$	nerwise					
f_n models be	ehavior of code corresponding to <i>n</i>		2. meet properties	s impose a partial order on $\mathcal L$					
511	1 5		• $3 \Box 3 = 3$						
			• 3 \[2 \] 2 \[3 \]						
 Let 𝒯 be the 	e set of all functions the code generates		• $3 \sqcap (2 \sqcap 4) =$	$(3 \square 2) \square 4$					
-	5		3. bottom						
			• $a \sqcap \bot = \bot$ for	or every $a \in \mathcal{L}$.					
			• $\forall a \in \mathcal{L}, a \succ$,					
			4. top						
			• $a \sqcap \top = a$ fo	r every $a \in f$					
			• $\forall a \in \mathcal{L}, \top \succeq$	•					
CS502	Data Flow Frameworks	5	CS502	Data Flow Frameworks					6

Data Flow Framework

A descending chain in \mathcal{L} is a sequence x_1, x_2, \dots, x_n :

1. $x_i \in \mathcal{L}, 1 \leq i \leq n$, and

2. $x_i \succeq x_{i+1}, 1 \le i < n$

If $\forall a \in \mathcal{L}, \exists$ constant b_a such that any chain beginning with a has length $\leq b_a$, we say that \mathcal{L} is bounded.

Any bounded semilattice has finite descending chains.

Admissible Function Spaces [Kam & Ullman]

For a bounded semilattice $\mathcal{L}, \mathcal{F} : \mathcal{L} \to \mathcal{L}$ is an *admissible function space* \iff

1. Monotonic:

$$\forall f \in \mathcal{F}, \forall x, y \in \mathcal{L}, \ x \preceq y \Rightarrow f(x) \preceq f(y)$$

2. Identity operation:

Constant Propagation

 $\exists f_I \in \mathcal{F} : \forall x \in \mathcal{L}, f_I(x) = x$

3. Closed under composition:

$$f,g\in\mathcal{F}\Rightarrow f\circ g\in\mathcal{F}$$
 where $\forall x\in\mathcal{L}, [f\circ g](x)=f(g(x))$

4. \perp exists to any $x \in \mathcal{L}$

 $\forall x \in \mathcal{L}, \exists$ a finite subset $H \subseteq \mathcal{F} \ \ni x = \sqcap_{f \in H} f(\bot)$

7

CS502

Data Flow Frameworks

Example Framework

Monotone Data Flow Framework

is a triple $\langle \mathcal{L}, \sqcap, \mathcal{F} \rangle$ where

- \sqcap is the meet operation, or *confluence* operator
- $\langle \mathcal{L}, \Box \rangle$ is a semilattice of finite length with bottom \bot
- \mathcal{F} is a monotone function space on \mathcal{L} : a set of unary functions such that each operation $f \in \mathcal{F}$ is monotonic:

 $\forall f \in \mathcal{F}, \forall x, y \in \mathcal{L}, x \prec y \Rightarrow f(x) \prec f(y)$

A monotone data flow framework $\langle \mathcal{L}, \sqcap \rangle$ is **distributive** \iff

$$\forall f \in \mathcal{F}, \forall x, y \in \mathcal{L}, \ f(x \sqcap y) = f(x) \sqcap f(y)$$

Meet Over All Paths Solution

$$MOP(v) = \sqcap_{q \in Paths(v)} T_q(\top)$$

CS502

Data Flow Frameworks

Constant Propagation

- 1. Is CP monotonic? Yes
- 2. Is CP distributive?

No

f(A+B) = 5

- $f(A) + f(B) = 2 \sqcap 3 + 3 \sqcap 2 = \bot$
- 3. Is every solution a meet over all paths solution? No

Constant Propagation

- 1. Is CP monotonic?
- 2. Is CP distributive?
- 3. Is every solution a meet over all paths solution?

10

Reaching Definitions

CS502

For each vertex, find the set of variable definitions that might reach that vertex.

GEN(v) variable v may be defined or assigned to

KILL(v) variable v is defined, overwriting other definitions

1 read N		GEN	KILL	PRED	SUCC
2 call check (N)	1:	N_1	Ν		2
$3 i \leftarrow 1$	2:	N_2		1	3
4 while $i < N$ do	3:	i3	i	2	4
$5 \qquad a[i] \leftarrow a[i] + i$	4 :			3,7	5,8
	5 :	a_5		4	6
$6 \qquad i \leftarrow i+1$	6:	<i>i</i> 6	i	5	7
7 <u>end</u>	7:			6	4
8 print $a[n]$	8:			4	

Data Flow Frameworks

11

9

Example Framework

CS502

Reaching Definitions: Transfer Function

IN(v) the set of definitions that reach statement v

$$IN(v) = \bigcup_{p \in PRED(v)} OUT(p)$$

OUT(v) the set of reaching definitions just after statement v

$$OUT(v) = GEN(v) \cup (IN(v) - KILL(v))$$

IN is an inherited attribute

OUT is a synthesized attribute

GEN and KILL are basic attributes

Forward data flow problems propagate from predecessors of v to v

Backward data flow problems propagate from successors of v to v

Data Flow Frameworks

Reaching Definitions

Monotone Data Flow Framework

- A = set of *generations*, generation = (statement, variable)
- Lattice: $\mathcal{L} = \langle 2^A, \cup \rangle$ $2^A \equiv$ the set of all subsets of *A* What does this look like?
- initial value = {}
- transfer function $t_v(x) = GEN(v) \cup (x KILL(v))$
- monotone: $x \subseteq y \Rightarrow t_v(x) \subseteq t_v(y)$
- distributive: $t_v(x \cup y) = t_v(x) \cup t_v(y)$

CS502

Data Flow Frameworks

Work List Iterative Algorithm

 $\begin{array}{l} \mbox{initialize } ReachingDefinitions(n) \\ \mbox{worklist} \leftarrow \mbox{the set of all nodes} \\ \hline \mbox{while } worklist \neq \{\} \\ \mbox{take } n \mbox{ from worklist} \\ \mbox{recompute } ReachingDefinitions(n) \\ \hline \mbox{tif } ReachingDefinitions(n) \mbox{changed} \\ \mbox{worklist} \leftarrow \mbox{worklist} \cup SUCC(n) \\ \hline \mbox{end} \end{array}$

end

CS502

initialization

 $IN(v) \leftarrow \{\}$ $OUT(v) \leftarrow GEN(v)$

computation

IN(v) = OUT(v) =CS502

15

13

CS502

Reaching Definitions Algorithm

 $\begin{array}{l} \underbrace{ \text{foreach} v \in V \\ IN(v) \leftarrow \{ \} \\ OUT(v) \leftarrow GEN(v) \\ \hline end \\ worklist \leftarrow V \\ \hline while \ worklist \neq \{ \} \\ take \ v \ from \ worklist \\ IN(v) \leftarrow \bigcup_{p \in PRED(v)} OUT(p) \\ OUT(v) \leftarrow GEN(v) \bigcup (IN(v) - KILL(v)) \\ \hline if \ OUT(v) \ changed \\ worklist \leftarrow worklist \cup SUCC(v) \\ \hline end \\ \hline \end{array}$

end

Reaching Definitions

For each vertex, find the set of variable definitions that might reach that vertex.

GEN(v) variable v may be defined or assigned to

KILL(v) variable v is defined, overwriting other definitions

1 read N		GEN	KILL	PRED	SUCC
2 call check (N)	1:	N_1	N		2
$3 i \leftarrow 1$	2:	N_2		1	3
4 while <i>i</i> < <i>N</i> do	3:	i3	i	2	4
ج مأنا مأنا با	4 :			3,7	5,8
	5:	a_5		4	6
$6 \qquad i \leftarrow i+1$	6:	i ₆	i	5	7
7 end	7:			6	4
8 print $a[n]$	8:			4	

CS502

Data Flow Frameworks

Questions

- Does this always terminate?
- What answer does it compute?
- How fast (or slow) is it?

Reaching Definitions Example

	Initial	value	iterat	ion 1	1 iteration 2		iterat	ion 3
	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1								
2								
3								
4								
5								
6								
7								
8								
CS	502				Data Flov	v Framewo	orks	

Reaching Definitions Algorithm

foreach $v \in V$
$IN(v) \leftarrow \{\}$
$OUT(v) \leftarrow GEN(v)$
<u>end</u>
worklist $\leftarrow V$
<u>while</u> worklist \neq {}
take v from worklist
$IN(v) \leftarrow \bigcup_{p \in PRED(v)} OUT(p)$
$OUT(v) \leftarrow GEN(v) \cup (IN(v) - KILL(v))$
$\underline{if} OUT(v)$ changed
worklist \leftarrow worklist \cup SUCC(v)
end
end

end

19

17

CS502

Work List Iterative Algorithm

Questions

- Does this always terminate?
- How fast (or slow) is it?
- What answer does it compute?
- How fast can we make it?

CS502

Data Flow Frameworks

Correctness and Quality of Solution

Does it compute the answer we want?

Definition: For each basic block *b*

 $MOP(b) = \sqcap_{q \in Paths(b)} T_q(\top)$

- Paths that reach a block are reachable in the control flow graph, which may be conservative
- Perfect Solution = meet over real paths taken during program execution
- $MOP \leq Perfect Solution$
- In some sense, MOP is best feasible solution
- Not guaranteed to achieve *MOP* solution unless transfer functions distributive

Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions:

- 1. each node is initialized to {}
- 2. a definition has only one statement that generates it
- 3. \mathcal{F} is associative $\Rightarrow \mathcal{F}$ is monotone \Rightarrow each $x \in$ *reaching definitions* can be added once

4. N * (E + 1) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof? CS502 Data Flow Frameworks

22

Quality of Solution

Maximal Fixed Point (MFP)

- Any iterative data-flow problem that satisfies admissible function requirements when it converges to a solution and terminates, will have reached a Maximal Fixed Point solution
- MFP is unique, regardless of order of propagation
- If distributive, MFP = MOP
- Otherwise, $MFP \leq MOP$
- So, $MFP \leq MOP \leq$ Perfect Solution

How fast can we make the iterative algorithm?

Examples

Execution time of iterative framework

- For each basic block: # successors (predecessors) + constant bit vector operations
- Number of visits to basic block: length of longest acyclic path

What is the complexity equation? $O(n^2)$

Where is unnecessary work being performed?

- · Iteration over every node on each pass
- Testing for altered sets on each pass
- Extra pass to detect stabilization

Problem: Nodes may be visited in any order

25	CS502	Data Flow Frameworks

How fast can we make the iterative algorithm?

To avoid unnecessary work:

 Bound number of visits by visiting a node roughly after all its predecessorsn (reverse PostOrder for forward data-flow problem; conceptually, PostOrder for backward problem)

Data Flow Frameworks

Change to algorithm:

```
\textit{changed} \gets \textit{false}
```

<u>do</u>

CS502

<u>foreach</u> $v \in V$ in rPostOrder <u>do</u> solve for *b* <u>if</u> old ≠ new changed ← true <u>end</u> while changed

• How does this improve performance?

CS502

Data Flow Frameworks

27

PostOrder and Reverse PostOrder

```
Step1: PostOrder
     proc main() \equiv
       count \leftarrow 1
       Visit(Entry)
     end
     proc Visit(v) \equiv
       mark v as visited
       foreach successor s of v not yet visited
          Visit(s)
       end
       PostOrder(v) \leftarrow count + +
     end
Step 2: rPostOrder
     foreach v \in V do
       rPostOrder(v) \leftarrow |V| - PostOrder(v)
     end
Depth-first search \approx rPostOrder
CS502
                                   Data Flow Frameworks
```

Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

- the domain and its size
- · size of a single fact
- forward or backward problem
- model of characteristic function

Representation

- Sets represented by *bit vector*
- Size of each bit vector:

Available Expressions: # distinct expressions in program Reaching Definitions: # definitions in program Live Variable Analysis: # variables in program

Complexity

- distinguish bit-vector steps from logical steps
- watch out for complex mappings ($GEN \rightarrow KILL$)

Data Flow Frameworks

29

CS502

Data Flow Frameworks

30

Summary

- · Iterative data-flow framework used to solve global data-flow problems
- Use semi-lattice to represent facts
- Analysis on semi-lattice with finite descending chains and monotone data-flow framework guarantees termination
- Monotonic data-flow framework guarantees MFP solution reached
- Distributive to guarantee MOP solution reached
- rPostOrder (or PostOrder) for "rapid" data-flow problems guarantees bound of O(n(d+2)) complexity, where d is maximum number of retreating edges on any acyclic path in the CFG (loop "interconnectiveness")