
Using Static Single Assignment

Last Time

• Basic definition, and why it is useful

• How to build it

Today

• Loop Optimizations

– Induction variables (standard vs. SSA)

– Loop Invariant Code Motion (SSA based)

CS502 Using SSA 1

SSA form

!"

"!

if (. . .)B1

x← 5B2 x← 3B3

y← xB4

!"

"!

if (. . .)B1

x0 ← 5B2 x1 ← 3B3

x2 ← !(x0,x1)
y← x2

B4

CS502 Using SSA 2

Loop Optimization

Loops are important, they execute often

• typically, some regular access pattern

regularity⇒ opportunity for improvement

repetition⇒ savings are multiplied

• assumption: loop bodies execute 10depth times

CS502 Using SSA 3

Classical Loop Optimizations

• Loop Invariant Code Motion

• Induction Variable Recognition

• Strength Reduction

• Linear Test Replacement

• Loop Unrolling

CS502 Using SSA 4

Other Loop Optimizations

Other Loop Optimizations

• Scalar replacement

• Loop Interchange

• Loop Fusion

• Loop Distribution

• Loop Skewing

• Loop Reversal

CS502 Using SSA 5

Loop Invariant Code Motion

• Build the SSA graph

• Need semi-pruned insertion of !-nodes:

If two non-null paths x→+ z and y→+ z converge at node z, and nodes x

and y contain assignments to t (in the original program), then a !-node

for t must be inserted at z (in the new program)

and t must be live across some basic block

Simple test:

If, for a statement s≡ [x← y⊗ z], none of the operands y,z refer to a
!-node or definition inside the loop, then

Transform:

assign the invariant computation a new temporary name, t ← y⊗ z, move

it to the loop pre-header, and assign x← t.

CS502 Using SSA 6

Loop Invariant Code Motion: Example I

B =

A = X =

Y =

X = A + B

Y = X + Y

loop

end loop

CS502 Using SSA 7

Loop Invariant Code Motion

More invariants

Start at loop entry point:

Test: If operands point to definitions inside loop, and those definitions are a

function of loop invariants (recursive definition)

Transform: as before for each invariant

CS502 Using SSA 8

Loop Invariant Code Motion: Example II

B =

A = X =

Y =

X = A + B

Y = X + Y

loop

end loop

Z = X + A

CS502 Using SSA 9

Induction Variable Recognition

• What is a loop induction variable?

• Why might we want to detect one?

i← 0

while i< 10 do

i← i+1

end

Simplest Method: Pattern match for i← i+ c in loop and ensure no other

definition of i in loop.

Does not catch all loop induction variables.

CS502 Using SSA 10

Taxonomy of Induction Variables

1. A basic induction variable is a variable i

• whose only definition within the loop is an assignment of the form

i← i± c, where c is loop invariant.

2. A mutual induction variable i′ is

• defined once within the loop, and its value is a linear function of some
other induction variable i such that

i′ ← i⊗ c1± c2

where ⊗ is one of × or /, and c1,c2 are loop invariant.

3. The family of a basic induction variable i:

• the set of mutual induction variables on i

CS502 Using SSA 11

Optimistic Induction Variable Recognition

IV ← {}
foreach statement s in loop do

if s≡ [i← x± c]∧ (c is loop invariant)
IV ← IV ∪{i}

elsif s≡ [i← x⊗ c]∧ c is loop invariant
IV ← IV ∪{i}

end

end

do

changed ← false
foreach s≡ [i← . . .] ∈ IV do

if ∃u ∈ Uses(s) : u ,∈ IV
IV ← IV −{i}
changed ← true

end

end

while changed

Finds linear induction variables and catches mutual induction variables.
CS502 Using SSA 12

Optimistic Induction Variables

i← 0

k← 0

do

j← k+1

k← j+2

i← i×2

end

CS502 Using SSA 13

Loop Induction Variables with SSA

• Build the SSA graph

• Going from the innermost to the outermost loop

• Find cycles in the SSA graph

Each cycle may be for a basic induction variable

if the variable in the cycle is a function of loop invariants and its value on

the current iteration

(ie, its ! is a function of an initialized variable and an instance of v in
the cycle)

• Other induction variables can depend on basic induction variables.

CS502 Using SSA 14

Loop Induction Variables: Example I

i← 1

do

. . .(i) . . .

i← i+1

. . .(i) . . .

end

i1 ← 1

do

i2 ← !(i1, i3)

. . .(i2) . . .

i3 ← i2 +1

. . .(i3) . . .

end

CS502 Using SSA 15

Loop Induction Variables with SSA

How to determine: If the variable(s) in the cycle is(are) a function of loop
invariants and its value on the current iteration:

• The !-node in the cycle will take one definition from inside the loop and

one from outside the loop (assuming !-nodes with only two inputs)

• The definition inside the loop will be part of the cycle and will get one

operand from the !-node and any others will be loop invariant

• For linear induction variables the operator will be addition, subtraction, or

unary minus

CS502 Using SSA 16

Loop Induction Variables: Example II

i← 3

m← 0

do

j← 3

i← i+1

l← m+1

m← l+2

j← i+2

k← 2× j

end

⇒

i1 ← 3

m1 ← 0

do

i2 ← !(i1, i3)

m2 ← !(m1,m3)

j1 ← 3

i3 ← i2 +1

l1 ← m2 +1

m3 ← l1 +2

j2 ← i3 +2

k1 ← 2× j2

end

CS502 Using SSA 17

Strength Reduction

Philosophy:
Replace an expensive instruction (eg, multiply) with a cheaper one (eg,
addition).

• Applied to induction variable families

• Opportunity: array indexing

• Why?: slow or non-existent integer multiply

Example

J = 0 for (J = 0; J<100; J++)
A(J) = 0

L2: if (J>=100) GOTO L1
I := 4 * J + &A
*I := 0
J := J + 1
GOTO L2

L1:

Allen, Cocke, Kennedy, “Reduction in Operator Strength,” in Program Flow Analysis, Muchnick
and Jones (Eds), 1981, pp 79–101

CS502 Using SSA 18

Strength Reduction Algorithm

Algorithm

Let i be an induction variable in the family of basic induction variable j,

such that: i← j× c1 + c2

• Create new variable, i′

• Initialize in preheader, i′ ← j× c1 + c2

• Track value of j.

After j← j+ c3, add i
′ ← i′+(c1× c3)

• Replace definition of i with i← i′

Key point

• c1, c2 and c3 are constant or loop invariant, so the computation can be

moved out of the loop or folded at compile time

• Reduces number of multiplies executed at run time

CS502 Using SSA 19

Strength Reduction: Example

J = 0

L2: if (J >= 100) GOTO L1

I = 4 * J + &A

*I = 0

J = J + 1

GOTO L2

L1:

⇒

J = 0

I’ = 4 * J + &A

L2: if (J >= 100) GOTO L1

I = I’

*I = 0

J = J + 1

I’ = I’ + (4 * 1)

GOTO L2

L1:

CS502 Using SSA 20

Candidates for Strength Reduction

• IV multiplied by an invariant

i← 2

...

i← i+1

. . . i×50

⇒

i← 2

i.50 ← i×50
...

i← i+1

i.50 ← i.50+50

. . . i.50

candidates ← {}
foreach statement s in loop

if s≡ [i′ ← i× c]∧ i ∈ IV ∧ c is loop invariant
candidates ← candidates ∪{s}

end

end

• Polynomials: IV multiplied by different IV
• IV multiplied by itself

• IV modulo a constant
• addition of induction variables

CS502 Using SSA 21

Examples

i← 2

while i< k do

i← i+1

t ← i×50

end

⇒

i← 2

i.50 ← i×50

while i< k do

i← i+1

i.50 ← i.50+50

t ← i.50

end

CS502 Using SSA 22

Examples

j← 2

while j < k do

e← j ∗3

i← j+1

t ← i∗50

j← j+1

end

⇒

j← 2

while j < k do

i← j+1

end

CS502 Using SSA 23

Strength Reduction Details

• What happens if two induction variables i1 and i2 are in the family of the

same basic induction variable j with the same constants c1 and c2?

• When might this happen in real code?

do i = 1, n

A(i) = B(i) + B(i+1)

i = 0

L1: ...

i = i + 1

j = i + 1

t1 = 4*i + &A

t2 = 4*i + &B

t3 = 4*j + &B

...

CS502 Using SSA 24

Linear Test Replacement

Eliminate the induction variable altogether

• the loop test often is the last use of a basic induction variable after

strength reduction

• fewer instructions, fewer live ranges

Algorithm

• If the only use of a IV is the loop test and its own increment

and if the test is always computed (ie, there is only one exit from the loop)

• Then replace the test with an equivalent one.

Say test is “i compare k”:

If ∃i.c ∈ IV then replace test with “i.c compare c× k”

• How does the sign of c affect the test?

CS502 Using SSA 25

Example

i← 2

i.50 ← i×50

while i< k do

i← i+1

i.50 ← i.50+50

. . . i.50

end

⇒

i← 2

i.50 ← i×50

while i.50 < 50∗ k do

i.50 ← i.50+50

. . . i.50

end

CS502 Using SSA 26

Reduction of operator strength

Taxonomy — Reduction of Operator Strength

Machine Independent
remove redundancy no (gets some cses)

move evaluation no

specialize yes

remove useless code maybe

expose opportunities yes

Machine Dependent
costly op→cheap op yes assumes mult costly

hide latency no

use powerful op no

CS502 Using SSA 27

