
Static Single Assignment (SSA) Form

A sparse program representation for data-flow.

CS502 SSA form 1

Computing Static Single Assignment (SSA) Form

Overview:

• What is SSA?
• Advantages of SSA over use-def chains
• “Flavors” of SSA
• Dominance frontiers revisited
• Inserting !-nodes
• Renaming the temporaries
• Translating out of SSA form

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, Efficiently Computing

Static Single Assignment Form and the Control Dependence Graph, ACM TOPLAS

13(4):451–490, Oct 1991

CS502 SSA form 2

What is SSA?

• Each assignment to a temporary is given a unique name
• All of the uses reached by that assignment are renamed
• Easy for straight-line code

v ← 4 v0 ← 4

← v+ 5 ← v0 + 5

v ← 6 v1 ← 6

← v+ 7 ← v1 + 7

• What about control flow?
⇒ !-nodes

CS502 SSA form 3

What is SSA?

!"

"!

if (. . .)B1

x← 5B2 x← 3B3

y← xB4

!"

"!

if (. . .)B1

x0 ← 5B2 x1 ← 3B3

x2 ← !(x0,x1)
y← x2

B4

CS502 SSA form 4

What is SSA?

t ← 1B1

t ← t+ 1B2

#

#

#

t0 ← 1B1

t1 ← !(t2, t0)
t2 ← t1 + 1

B2

#

#

#

CS502 SSA form 5

Advantages of SSA over use-def chains

• More compact representation

• Easier to update?

• Each use has only one definition

• Definitions explicitly merge values
May still reach multiple !-nodes

CS502 SSA form 6

“Flavors” of SSA

Where do we place !-nodes?

Condition:

If two non-null paths x→+ z and y→+ z converge at node z, and nodes x

and y contain assignments to t (in the original program), then a !-node for

t must be inserted at z (in the new program)

minimal
As few as possible subject to condition

semi-pruned by Preston Briggs

As few as possible subject to condition, and t must be live across some

basic block

pruned
As few as possible subject to condition, and no dead !-nodes

CS502 SSA form 7

Dominance Frontiers Revisited

The dominance frontier of v is the set of nodes DF(v) such that:

• v dominates a predecessor of w ∈ DF(v), but
x does not strictly dominate w ∈ DF(v)

DF(v) = {w | (∃u ∈ PRED(w)
)
[v DOM u]∧ v DOM! w}

• d dominates v, d DOM v, in a CFG iff all paths from Entry to v include d

• d strictly dominates v:

d DOM! v ⇐⇒ d DOM v and d (= v

• The immediate dominator of v, IDOM(v), is the closest strict dominator of v:

d IDOM v ⇐⇒ d DOM! v∧ (∀w | w DOM! v)[w DOM d]

IDOM(v) is v’s parent in the dominator tree

CS502 SSA form 8

Dominance Frontier: Example

1

2

3 4

5

6

7

8 9

10

A =

A = A =

DF(9)

DF({8,9}) =

DF(10) =

 =

DF(8) =

 =DF(2)

DF({2,8,9,10}) =

CS502 SSA form 9

Iterated Dominance Frontier

Extend the dominance frontier mapping from nodes to sets of nodes:

DF(S) =
[
n∈S

DF(n)

The iterated dominance frontier DF+(S) is the limit of the sequence:

DF1(S) =DF(S)
DFi+1(S)=DF(S∪DFi(S))

Theorem:

The set of nodes that need !-nodes for any temporary t is the iterated

dominance frontier DF+(S), where S is the set of nodes that define t

CS502 SSA form 10

Iterated Dominance Frontier Algorithm: DF+(S)

Input: Set of blocks S

Output: DF+(S)

workList ← {}
DF

+(S) ← {}
foreach n ∈ S do

DF
+(S) ← DF

+(S)∪{n}
workList ← workList ∪{n}

end

while workList (= {} do
take n from workList
foreach c ∈ DF(n) do
if c (∈ DF

+(S) then
DF

+(S) ← DF
+(S)∪{c}

workList ← workList ∪{c}
end

end

end

CS502 SSA form 11

Inserting !-nodes (minimal SSA)

foreach t ∈ Temporaries do
S← {n | t ∈ Def(n)}∪Entry
Compute DF

+(S)
foreach n ∈ DF

+(S) do
Insert a !-node for t at n

end

end

CS502 SSA form 12

Inserting !-nodes for globals (semi-pruned SSA)

Compute local liveness: globals are those live across block boundaries (ie,
used before definition in any basic block)
foreach t ∈ Temporaries do
if t ∈ Globals then
S← {n | t ∈ Def(n)}∪Entry
Compute DF

+(S)
foreach n ∈ DF

+(S) do
Insert a !-node for t at n

end

end

end

CS502 SSA form 13

Inserting fewest !-nodes (pruned SSA)

Compute global liveness: nodes where each temporary is live-in
foreach t ∈ Temporaries do
if t ∈ Globals then
S← {n | t ∈ Defs(n)}∪Entry
Compute DF

+(S)
foreach n ∈ DF

+(S) do
if t live-in at n then

Insert a !-node for t at n

end

end

end

end

CS502 SSA form 14

Renaming the temporaries

After !-node insertion, uses of t are either:

original: dominated by the definition that computes t.

If not, then ∃ path to use avoiding definition, which means separate paths
from definitions converge between definition and use, thus inserting
another definition.
ie, each use dominated by an evaluation of t or a !-node for t

!: has a corresponding predecessor p, dominated by the definition of t (as
before)

Thus, walk dominator tree, replacing each definition and its dominated uses

with a new temporary.

Use a stack to hold current name (subscript) for each set of dominated nodes.

Propagate names from each block to corresponding !-node operands of its

successors.

CS502 SSA form 15

Renaming the temporaries

foreach t ∈ Temporaries do count [t] ← 0; stack [t] ← empty ; stack [t].push(0)
Rename(Entry)

proc Rename(n) ≡
foreach statement I ∈ n do

if s (≡ ! then foreach t ∈ Uses(I) do
i← stack [t].top
replace use of t with ti in I

foreach t ∈ Defs(I) do
i← ++count [t]; stack [t].push(i)
replace def of t with ti in I

foreach s ∈ SUCC(n) do
given n is the jth predecessor of s

foreach ! ∈ s do

given t is the jth operand of !

i← stack [t].top
replace jth operand of ! with ti

foreach c ∈ Children(n) do Rename(c)
foreach statement I ∈ n, t ∈ Defs(I) do stack [t].pop()

CS502 SSA form 16

Translating Out of SSA Form

Replace !-nodes with copy statements in predecessors

!"

"!

if (. . .)B1

x0 ← 5B2 x1 ← 3B3

x2 ← !(x0,x1)
y← x2

B4

!"

"!

if (. . .)B1

x0 ← 5
x2 ← x0

B2
x1 ← 3
x2 ← x1

B3

y← x2B4

CS502 SSA form 17

Normal Form, Optimized SSA, Incorrect Translation

a ← . . .
b ← . . .

c ← a

a ← b

b ← c

. . . ← a

#

#

#

a0 ← . . .
b0 ← . . .

a1 ← !(b0,b1)
b1 ← !(a0,a1)

. . . ← a1

#

#

#

a0 ← . . .
b0 ← . . .
a1 ← b0

b1 ← a0

a1 ← b1

b1 ← a1

. . . ← a1

#

#

#

CS502 SSA form 18

Normal Form, Edge-Split Opt SSA, Correct Translation

a ← . . .
b ← . . .

c ← a

a ← b

b ← c

. . . ← a

#

#

#

a0 ← . . .
b0 ← . . .

a1 ← !(b0,b1)
b1 ← !(a0,a1)

. . . ← a1

#

#

$

#

a0 ← . . .
b0 ← . . .
a1 ← b0

b1 ← a0

c ← a1

a1 ← b1

b1 ← c

. . . ← a1

#

#

$

#

CS502 SSA form 19

Solution: critical edge splitting

Critical Edge:

source has multiple out-edges and target has multiple in-edges

Good for other transformations too (cf landing pads)

CS502 SSA form 20

Next Time

Static Single Assignment

• Induction variables (standard vs. SSA)
• Loop Invariant Code Motion with SSA

Wegman & Zadeck, Constant Propagation with Conditional Branches,
TOPLAS 13(2):181–210, Apr 1991

CS502 SSA form 21

