Static Single Assignment (SSA) Form

A sparse program representation for data-flow.

Overview:

- What is SSA?
- Advantages of SSA over use-def chains
- “Flavors” of SSA
- Dominance frontiers revisited
- Inserting ϕ-nodes
- Renaming the temporaries
- Translating out of SSA form

What is SSA?

- Each assignment to a temporary is given a unique name
- All of the uses reached by that assignment are renamed
- Easy for straight-line code

 $v \leftarrow 4$
 $v \leftarrow v + 5$
 $v \leftarrow 6$
 $v \leftarrow v + 7$
 $v_0 \leftarrow 4$
 $v_0 \leftarrow v_0 + 5$
 $v_1 \leftarrow 6$
 $v_1 \leftarrow v_1 + 7$

- What about control flow?

 $\Rightarrow \phi$-nodes

What is SSA?

B1 \(t \leftarrow 1 \)
\[\begin{array}{c}
B2 \ t \leftarrow t + 1 \\
\end{array} \]

B1 \(t_0 \leftarrow 1 \)
\[\begin{array}{c}
B2 \ t_1 \leftarrow \phi(t_2, t_0) \\
\end{array} \\
\begin{array}{c}
t_2 \leftarrow t_1 + 1 \\
\end{array} \]

Advantages of SSA over use-def chains

- More compact representation
- Easier to update?
- Each use has only one definition
- Definitions explicitly merge values
 May still reach multiple \(\phi \)-nodes

“Flavors” of SSA

Where do we place \(\phi \)-nodes?

Condition:

If two non-null paths \(x \rightarrow^+ z \) and \(y \rightarrow^+ z \) converge at node \(z \), and nodes \(x \) and \(y \) contain assignments to \(t \) (in the original program), then a \(\phi \)-node for \(t \) must be inserted at \(z \) (in the new program)

minimal

As few as possible subject to condition

semi-pruned by Preston Briggs

As few as possible subject to condition, and \(t \) must be live across some basic block

pruned

As few as possible subject to condition, and no dead \(\phi \)-nodes

Dominance Frontiers Revisited

The dominance frontier of \(v \) is the set of nodes \(DF(v) \) such that:

\(v \) dominates a predecessor of \(w \in DF(v) \), but \(x \) does not strictly dominate \(w \in DF(v) \)

\[DF(v) = \{ w \mid (\exists u \in \text{PRED}(w))[(v \text{ DOM } u) \land v \text{ DOM! } w] \} \]

\(d \) dominates \(v \), \(d \text{ DOM } v \), in a CFG iff all paths from Entry to \(v \) include \(d \)

\(d \) strictly dominates \(v \):

\(d \text{ DOM! } v \iff d \text{ DOM } v \text{ and } d \neq v \)

The immediate dominator of \(v \), \(\text{IDOM}(v) \), is the closest strict dominator of \(v \):

\[d \text{ IDOM } v \iff d \text{ DOM! } v \land (\forall w \mid w \text{ DOM! } v)[w \text{ DOM } d] \]

\(\text{IDOM}(v) \) is \(v \)'s parent in the dominator tree
Dominance Frontier: Example

Iterated Dominance Frontier

Extend the dominance frontier mapping from nodes to sets of nodes:

\[DF(S) = \bigcup_{n \in DF(n)} n \]

The iterated dominance frontier \(DF^+(S) \) is the limit of the sequence:

\[DF_1(S) = DF(S) \]
\[DF_{i+1}(S) = DF(S \cup DF_i(S)) \]

Theorem:

The set of nodes that need \(\phi \)-nodes for any temporary \(t \) is the iterated dominance frontier \(DF^+(S) \), where \(S \) is the set of nodes that define \(t \)

Iterated Dominance Frontier Algorithm: \(DF^+(S) \)

Input: Set of blocks \(S \)

Output: \(DF^+(S) \)

```
workList ← {}
DF^+(S) ← {}
foreach \( n \in S \) do
    DF^+(S) ← DF^+(S) ∪ \{n\}
    workList ← workList ∪ \{n\}
end
while workList ≠ {} do
    take \( n \) from workList
    foreach \( c \in DF(n) \) do
        if \( c \notin DF^+(S) \) then
            DF^+(S) ← DF^+(S) ∪ \{c\}
            workList ← workList ∪ \{c\}
        end
    end
end
```

Inserting \(\phi \)-nodes (minimal SSA)

```
foreach \( t \in Temporaries \) do
    S ← \{n | t ∈ Def(n)\} ∪ Entry
    Compute DF^+(S)
    foreach \( n ∈ DF^+(S) \) do
        Insert a \( \phi \)-node for \( t \) at \( n \)
    end
end
```

Inserting \(\phi \)-nodes for globals (semi-pruned SSA)

Compute local liveness: globals are those live across block boundaries (i.e., used before definition in any basic block)

```plaintext
foreach \( t \in \text{Temporaries} \) do
  if \( t \in \text{Globals} \) then
    \( S \leftarrow \{ n \mid t \in \text{Def}(n) \} \cup \text{Entry} \)
    Compute \( \text{DF}^+(S) \)
    foreach \( n \in \text{DF}^+(S) \) do
      Insert a \( \phi \)-node for \( t \) at \( n \)
    end
  end
end
```

Inserting fewest \(\phi \)-nodes (pruned SSA)

Compute global liveness: nodes where each temporary is live-in

```plaintext
foreach \( t \in \text{Temporaries} \) do
  if \( t \in \text{Globals} \) then
    \( S \leftarrow \{ n \mid t \in \text{Def}(n) \} \cup \text{Entry} \)
  Compute \( \text{DF}^+(S) \)
  foreach \( n \in \text{DF}^+(S) \) do
    if \( t \) live-in at \( n \) then
      Insert a \( \phi \)-node for \( t \) at \( n \)
  end
end
```

Renaming the temporaries

After \(\phi \)-node insertion, uses of \(t \) are either:

- **original**: dominated by the definition that computes \(t \).
 - If not, then exists a path to use avoiding definition, which means separate paths from definitions converge between definition and use, thus inserting another definition.
 - i.e., each use dominated by an evaluation of \(t \) or a \(\phi \)-node for \(t \)

- **\(\phi \)**: has a corresponding predecessor \(p \), dominated by the definition of \(t \) (as before)

Thus, walk dominator tree, replacing each definition and its dominated uses with a new temporary.

Use a stack to hold current name (subscript) for each set of dominated nodes.

Propagate names from each block to corresponding \(\phi \)-node operands of its successors.

```plaintext
proc Rename(n) ≡
foreach statement \( l \in n \) do
  if \( s \neq \phi \) then foreach \( t \in \text{Uses}(l) \) do
    \( i \leftarrow \text{stack}[r].\text{top} \)
    replace use of \( t \) with \( t_i \) in \( l \)
  foreach \( t \in \text{Def}(l) \) do
    \( i \leftarrow ++\text{count}[r]. \text{stack}[r].\text{push}(i) \)
    replace \( \text{def of } t \) with \( t_i \) in \( l \)
  foreach \( s \in \text{SUCC}(n) \) do
    given \( n \) is the \( j \)th predecessor of \( s 
    foreach \( \phi \in s \) do
      given \( t \) is the \( j \)th operand of \( \phi 
      \( i \leftarrow \text{stack}[r].\text{top} \)
      replace \( j \)th operand of \( \phi \) with \( t_i \)
  foreach \( c \in \text{Children}(n) \) do Rename(c)
  foreach statement \( l \in n, t \in \text{Def}(l) \) do stack[r].pop()
```
Translating Out of SSA Form

Replace ϕ-nodes with copy statements in predecessors

Normal Form, Optimized SSA, Incorrect Translation

Solution: critical edge splitting

Critical Edge:
source has multiple out-edges and target has multiple in-edges

Good for other transformations too (cf landing pads)
Next Time

Static Single Assignment

- Induction variables (standard vs. SSA)
- Loop Invariant Code Motion with SSA

Wegman & Zadeck, *Constant Propagation with Conditional Branches*,