Partially Ordered Sets

Background for Program Analysis
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Partial ordering

® A partial ordering is a relation:
C: L x L — {true, false}

® that is:
® reflexive: Vvi:l1C 1
® transitive: Vii,lo,l3:[1 ClaoNIs Clg =11 Cl3

® anti-symmetric: Vii,la: 11 Ela ANl Bl = 11 =15
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Partially ordered set

® A partially ordered set (L,C)

is a set L equipped with a partial ordering C
e b 1=l Cl

@ L[ Clh=0LClhANIl#lI
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Bounds

® Y C L has | € L as an upper bound if
Vi'eY :I'C1

and!/ € [ as a lower bound if
V') eY :l' J1
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Least upper bound

® A least upper bound [ of Y is an upper
bound of Y that satisfies [ T lo whenever [y
is another upper bound of YV

® A subset Y need not have a least upper
bound but if one exists then it is unique
(since C is anti-symmetric)

® The least upper bound of Y is written [ |Y
o ll L] l2 = |_|{l1,l2}
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Greatest lower bound

® A greatest lower bound [ of Y is a lower
bound of Y that satisfies {o T [ whenever [
is another lower bound of Y

® A subset Y need not have a greatest lower
bound but if one exists then it is unique
(since C is anti-symmetric)

® The greatest lower bound of Y'is written [ |Y

o [l = H{ll,lz}

Wednesday, November 14, 2007



Complete lattice

® A complete lattice L = (L,C)= (L,C,[],[ [, L, T)
is a partially ordered set (L, C) where all
subsets have an lub and a glb

® | —| |0 =T]Lis the least element

® T =[]0 =|]Lis the greatest element

Example
® For some set S )

|_|17 = OY
L=(P(S),S) = TIlIv =N

S
gy - Oy
L=(P(S5),2) = Tqv =

1l =S

T =0

both are complete lattices



Example |

S =1{1,2,3}

Lemma 2

For a partially ordered set L = (L, C)the claims:
(i) Lis a complete lattice

(i) every subset of Lhas a lub

(iii) every subset of L has a glb

are equivalent



Proof

Clearly, (i) implies (ii) and (iii).

To show that (ii) implies (i) letY C L and define
MY =|[{ileL|VI'eY: : ICl'}

Now, prove this defines a glb:

RHS set elements are all Ibs so the equation
defines a Ib. Since any Ib will be in the set it
follows that the equation defines the glb.

Similarly, for | |Y =[{le L |VI' e Y :I'C [}
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Moore family

® A Moore family is a subset Y of a complete
lattice L = (L,C) that is closed under glbs:

VY ' CY:[Y' €Y

® Thus,a Moore family always contains a least
element, [ |Y; and a greatest element, [0,
which equals the greatest element, T, from L

® A Moore family is never empty
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Example 3

Consider the complete lattice L = (P(S5), Q)

S =1{1,2,3}

{1,2,3} {{2},{1,2},{2,3},{1,2,3}}
{0,{1,2,3}}

are both Moore families

{13, {2}}
{0, {1}, {2}, {1,2}}

are not Moore families

Properties of functions
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A function f : Ly — L, between posets

Ly =(L1,C1) and Ly = (Lo, Co)

isontoif Vo € Lo : 3y € Ly : f(l1) =15

is [-1if VI, e Ly : f()=f(I') = 1=

is monotone if Vi,I'’ € L1 : 1Ty I' = f(I) Co f(I')
is additive if Vi1,lo € L1 : f(liUls) = f(l1) U f(I2)

is multiplicative if
Vll,lg € Lq: f(ll [ lg) = f(ll) [ f(lg)

007



Properties of functions

® The function f is completely additive if for
all Y C Lq:

FlLLY) =LA [T eY)
whenever | |, Y exists
® [t is completely multiplicative if for allY C L;:

1Y) =] |0r@) [V ey}

whenever |_| Y exists

Properties of functions

® Clearly | |, Yand | |1V exist when L, is a
complete lattice

® When L, is not a complete lattice the
above statements also require the
appropriate lubs and glbs to exist in Ly

® The function is dffine if for allY C L;,Y # ()
) =05 17 e}
whenever | |, Y exists (and Y # ()
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Properties of functions

® The function is dffine if for allY C L;,Y # ()
FLy) = |00 11 ey
whenever | |, Y exists (and Y # ()
® The function is strict if f(L1) = Lo

® Note that a function is completely additive
iff it is both affine and strict

Lemma 4

If L=(L,C,u,n, L, T)yandM = (M,C,1,M, 1L, T)
are complete lattices and Mis finite then the
three conditions:

(i) v: M — L is monotone
(ii) v(T) = T, and
(iii)y(m1 Mmg) = y(m1) M~ (m2) whenever
mi z mo N\ Mo Z ma

are jointly equivalent to v : M — L being
completely multiplicative
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Proof

First note that if 7is completely multiplicative
then all three conditions hold.

For the converse note that by monotonicity of ¥

we have(m1 Mmz) = ~(m1) Mv(m2) also when
my & mgo Vmg & my
By induction on the (finite) cardinality of M’ C M

we prove that W(|_| M) = |_|{7(m) |me M'}
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If the cardinality of M'is O then the equation

follows from (ii). If the cardinality of M'is larger

than O then we write M’ = M" U {m"} wherem” ¢ M"
to ensure that the cardinality of M" is strictly

less than that of M'; hence:

v M) = A M) nm”)
= ([ [M") Ay (m”)

= ([ fr(m) | me M"})ny(m”)
= {y(m)|me M}
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Lemma 5

A functionf : (P(D),C) — (P(FE),C)is dffine iff
there exists a function ¢ : D — P(F) and an
element gp@ € 77( F) such that

= J{e(d) |deY}ug

The function f is completely additive iff
additionally py = 0

Proof

Suppose f is as displayed and assume) + {); then
Jrm v eyt = [JUe@ [deY upy |Y eV}
= (J{J{ed) [deY}|Y eV} Uy
= (J{e@) |de JyIugy

= f(Jy)

showing that f is affine.




Next, suppose that f is affine and define ¢(d) = f({d})
andpy = f(0). ForY e P(D)lety = {{d} | d e Y} U {0}
and note that Y = | | and Y # ¢. Then

) = f(Jy
= U{f{d}) [deY}IU{f(®)})
= YHeld) [deY}U{pp})
= (Held) [deY}Ugpy

so f can be written in the required form.

Completely additive follows straightforwardly.
H

Isomorphism

An isomorphism from a poset(L;,C;) to a

poset (L3, C5)is a monotone function 0 : L; — Lo
such that there exists a (necessarily unique)
monotone function ! : Ly — Liwithf o671 = id
and 0" o 0 = id; (where id; is the identity

function over L;,i = 1, 2.



Construction of
Complete Lattices

® Complete lattices can be combined to
construct new complete lattices.

® Cartesian product
® Total function space

® Monotone function space
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Cartesian Product

Let L1 = (Ll, El) and L2 = (LQ, Eg) be POSGtS.
Define L = (L,C) = Ly x Laby

L = {(ll,lz) ’ l1 € L1 Ny € Lg}
and (l11,121) T (l12,l22) iff 111 T lia Alay T oo
It is then straightforward to verify that Lis a
poset. If additionally eachL; = (L;,C;,U;, M, Li, T)
is a complete lattice then sois L = (L,C,U,M, L, T)
and furthermore

LY =( {132 (1) € Y| [o{la | 31 (Ih, 1) € YY)

and | = (14, 15)and similarly for MY and T.
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Total function space

Let L; = (L;,C;) be a poset and let S be a set.
Define L = (L,C) = S — Ly by
L={f:5— Li| fis a total function}

FEf it Vse S: f(s) Ty f'(s)
It is then straightforward to verify that L is a
poset. If additionally L, = (L1, Cq, Ui, My, Ly, T1)
is a complete lattice then soisL = (L, C,U, M, L, T)
and furthermore|_|Y = \s. |_| {f(s)| feY}
and | = X\s.1; and similarly for mY and T.

and
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Monotone function
space

Let L1 = (Ll, El) and L2 = (LQ, Eg) be POSGtS.
DefineL = (L,C) = L; — Lyby

L={f:L1— Lo | fis a monotone function}
fEfiff Vi, e Ly: f(l1) Co f'(lh)

It is then straightforward to verify that Lis a
poset. If additionally eachL; = (L;,C;,U;, M, Li, T)
is a complete lattice then sois L = (L,C,U,M, L, T)
and furthermore

LY =M | |2{F) | f ey}

and L = \l;.L, and similarly formY and 1.
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Chains

A subsetY C L of a poset L = (L,C) is a chain if
Vi, lo €Y : (ll C lg) V (lg L ll)

Thus a chain is a (possibly empty) subset of L
that is totally ordered. It is a finite chain if it is a
finite subset of L.

A sequence (I,,)n = (In)nen of elements inLis
an ascending chain if n <m =1, C [,

Writing (1), also for {l,, | n € N}it is clear that
an ascending chain is also a chain.
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Similarly, a sequence(l,,),is a descending chain if
n<m=10,21l,

and clearly a descending chain is also a chain.

A sequence(l,)neventually stabilizes iff
dng e N:VneN:n>ng=10, =l

For (1), we write | |,, I, for| [{l. | n € N}

and similarly we write[ |, 1, for [ {5, | n € N}

mber 14, 2007
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Ascending Chain and
Descending Chain Conditions

® A poset L = (L,C) has finite height iff all chains
are finite.

® [t has finite height at most /4 if all chains contain
at most /i+1 elements; it has finite height h if
additionally there is a chain with A4+1 elements.

® The poset satisfies the Ascending Chain Condition
iff all ascending chains eventually stabilize.
Similarly, it satisfies the Descending Chain
Condition iff all descending chains eventually
stabilize.
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Lemma 6

A poset L = (L, C) has finite height iff it satisfies
both the Ascending and Descending Chain
Conditions.



Proof

First assume that L has finite height. If(l,,),is an
ascending chain then it must be a finite chain
and hence eventually stabilize; thus I satisfies
the Ascending Chain Condition. Similarly for
the Descending Chain Condition.
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Next assume that L satisfies both the Ascending
and Descending Chain Conditions, and consider
a chainY C L. We prove thatY'is a finite chain.
This is obvious if Yis empty so assume it is not.
Then also (Y, C)is a non-empty poset satisfying
the Ascending and Descending Chain
Conditions.

Wednesday, November 14, 2007
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As an auxiliary result we now show that

each non-empty Y’ C Y contains a least
element

Construct a descending chain(l;,),in Y’ as
follows: first let i, be an arbitrary element

of Y. For the inductive step leti;, , =1,if [ is
the least element of Y'; otherwise we can
findl;,,, € Y'suchthatl, ., Cl, AL, #1,.
Clearly (I7,)nis a descending chain inY; since Y
satisfies the Descending Chain Condition the
chain will eventually stabilize:

i.e. 3ng : Vn > ng : I, = I, and the construction
is such that l;() is the least element of Y.
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Back to the main proof: construct an ascending
chain(l,).in Y. Using the side result each i, is
chosen as the least element of the

setY \ {lo,...,ln—1} as long as the latter set is
non-empty, and this yieldsl,,_1 C 1, Al,,—1 # In;
whenY \ {ly,...,l,—1}is empty setl, = [,,_1,and
sinceY # () we know thatn > 0. Thus we have
an ascending chain inYand using the Ascending
Chain Condition we have Ing : Vn > ng : I, = I,
But this means thatY \ {i,...,l,,} = 0 since this
is the only way that we can achievel, ;1 = l,,.
It follows that Y is finite.
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Example 7

e O ®

o |

o 2 ® 2
o |

® o (

Ascending Chain but does not  Descending Chain but does
have finite height not have finite height
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Preservation

® [f L, and L each satisfy one of the
conditions finite height, ascending chain,
descending chain then L; x L, also satisfies
that condition.

® If Sis finite thenS — L preserves the
conditions of L.

® [, — Lodoes not in general preserve the
conditions.
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Lemma 8

For a poset L = (L, C) the conditions

(i) Lis a complete lattice satisfying the
Ascending Chain Condition, and

(i) L has a least element, L, and binary lubs and
satisfies the Ascending Chain Condition

are equivalent.
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Proof

It is immediate that (i) implies (ii) so we prove
that (ii) implies (i). Using Lemma 2 it suffices to
prove that all subsetsY of L have a Iub|_| Y. fy
is empty clearly |_|Y = L. If Yis finite and non-
empty then we can writeY = {y;,...,y,} forn >1
and it follows that|_|Y = (- Uy2)U...)Uyn.
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If Yis infinite then construct(l,), of elements
of L:let [y be an arbitrary element yo of Y and
given!l, take I, 41 =l ,inthecase Vyc Y : y C [,
and takel,,.1 = [, Uy,41in the case where
some y,,.; € Y satisfies y,,,; Z I,,. Clearly this
sequence is an ascending chain. Since L satisfies
the Ascending Chain Condition it follows that
the chain eventually stabilizes:

e, In:l,=10,+1=...

This means thatVy €Y : y C [,, because if y £ [,
thenl,, # [, Uy for a contradiction. So we have
constructed an upper bound forY. Since it is
the lub for{y,...,y,} C Yitis also the lub forY. .
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Lemma 9

For a complete lattice L. = (L, C) satisfying the
Ascending Chain Condition and a total
functionf : L — L, the conditions

(i) f is additive

i.e. Viy,lo: f(I1 Uly) = f(I1) U f(l) and

(ii) f is affine

e VY CLY #0: f(| |Y)=]| {[f()|leY}

are equivalent and in both cases f is a monotone
function.
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Proof

It is immediate that (ii) implies (i): take Y = {l;, 2}
Also, (i) implies that f is monotone since 1 C Iy

is equivalent to [; Lily = Is.

Next, suppose that f satisfies (i) and prove (ii).

If Yis finite write Y = {y1,...,y,} for n > 1and

FLY) =Ffpu.uye) = Fly)u... U fyn)
C | fry1teyy

If Y is infinite then the construction of the
proof of Lemma 8 gives| |V =1l,and i, =y, U... Uy
for some y; € Yand 0 <i <n. Then

FUY) =Fn) = Flyau...Uyo)
= flyn) U ... f(yo)
C [ [{rolieyy
Furthermore
Uy 2L [iro ey
follows from the monotonicity of /.
This completes the proof.



Fixed points

® Consider a monotone functionf : L — Lon
a complete lattice L = (L, C, UM, L, T). A
fixed point of fis an element [ € L: f(I) = L.
Write Fiz(f) = {l| f(I) = [} for the set of
fixed points.

® fis reductive at [ iff f(I) C .
Write Red(f) = {l| f(I) C i} for the set of
elements on whichfis reductive, and say
that f itself is reductive if Red(f) = L.

® Similarly, f is extensive at [ iff f(1) J 1.
Write Ext(f) = {l| f(1) 3 1} for the set of
elements on whichfis extensive, and say
that fitself is extensive if Ext(f) = L.

® Since Lis a complete lattice it is always the
case that Fiz(f) will have a glb in L:
ifp(f) = | Fie(f)
Similarly, Fiz(f) will have a lub in L:
afp(f) = | | Fiz(f)
® Tarski’s Fixed Point Theorem establishes that
lfp(f) is the least fixed point of fand that gfp(f)
is the greatest fixed point of /.
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Proposition |0
Tarski’s Fixed Point Theorem

Let L = (L,C,U,M, L, T) be a complete lattice.
If f: L — Lis a monotone function then fp(f)
and ¢fp(f) satisfy:

ifp(f) = [ |Red(f) € Fix(f)
afp(f) = | |Ext(f) € Fiz(f)

Proof

For ifp(f) define iy =[ | Red(f). First show that
f(lo) T ly so thatly € Red(f). Sincelp C 1 VI € Red(f)
and f is monotone we have

fllo) E f(I) T 1,VI € Red
and hence f(ly) C lo.
To prove [y C f(lp)observe thatf(f(lo)) C f(lo)
showing that f(ly) € Red(f) and hencely C f(lo)
by definition of /. Together this shows that lyis
a fixed point of f and sol, € Fiz(f). To see that
lois least in Fiz(f) note that Fiz(f) C Red(f) so g

ifp(f) = lo. Similarly for gfp(f).

Wednesda y, November 14 ,2007



|teration

Iterating to the Ifp by taking the lub of the
sequence(f"(L)),implies need for continuity of
f(i.e. f(|_| nln) = |_| n(f(ln)) for all ascending
chains (1,,),,), and similarly for the glb. One can
show that
LE fu(L) | |nfaldL) T Ufp(f)

C oap(HE[ ]| (MEMTIET
However, if L satisfies the Ascending Chaln
Condition then3n : (1) = f™*(L)and hence

ifp = f*(L). Similarly for gfp(f).
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