
Partially Ordered Sets 
Background for Program Analysis
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Partial ordering

• A partial ordering is a relation:

• that is:

• reflexive:

• transitive:

• anti-symmetric:

!: L× L→ {true, false}

∀l : l " l

∀l1, l2, l3 : l1 " l2 ∧ l2 " l3 ⇒ l1 " l3

∀l1, l2 : l1 " l2 ∧ l2 " l1 ⇒ l1 = l2
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Partially ordered set

• A partially ordered set

is a set    equipped with a partial ordering

•  

•

L

(L,!)

!

l2 ! l1 ≡ l1 # l2

l1 ! l2 ≡ l1 " l2 ∧ l1 $= l2
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Bounds

•           has          as an upper bound if

and        as a lower bound if

Y ⊆ L

l ∈ L

∀l′ ∈ Y : l′ # l

∀l′ ∈ Y : l′ # l

l ∈ L
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Least upper bound

• A least upper bound   of     is an upper 
bound of     that satisfies         whenever    
is another upper bound of

• A subset    need not have a least upper 
bound but if one exists then it is unique 
(since    is anti-symmetric)

• The least upper bound of    is written

•

l Y

Y l ! l0 l0
Y

Y

!

Y

l1 ! l2 ≡
⊔
{l1, l2}

⊔
Y
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Greatest lower bound

• A greatest lower bound   of     is a lower 
bound of     that satisfies         whenever    
is another lower bound of

• A subset    need not have a greatest lower 
bound but if one exists then it is unique 
(since    is anti-symmetric)

• The greatest lower bound of    is written

•

l Y

Y l0
Y

l0 ! l

!

Y

Y

!
Y

l1 ! l2 ≡
!
{l1, l2}
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Complete lattice

• A complete lattice                                            
is a partially ordered set          where all 
subsets have an lub and a glb

•                     is the least element

•                     is the greatest element

L = (L,!) = (L,!,
!

,
⊔

,⊥,#)
(L,!)

⊥ =
⊔
∅ =

!
L

! =
!
∅ =

⊔
L
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Example

• For some set

L = (P(S),⊆)

S
! ≡ ⊆⊔
Y =

⋃
Y

!
Y =

⋂
Y

⊥ = ∅
& = S

! ≡ ⊇⊔
Y =

⋂
Y

!
Y =

⋃
Y

⊥ = S

% = ∅

L = (P(S),⊇)

⇒

⇒

both are complete lattices
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Example 1

S = {1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 2}

{1, 2}

{1, 3}

{1, 3}

{2, 3}

{2, 3}{1} {2} {3}

{3}{2}{1}

∅

∅

L = (P(S),⊆) L = (P(S),⊇)
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For a partially ordered set               the claims:

(i)    is a complete lattice

(ii) every subset of    has a lub

(iii) every subset of    has a glb

are equivalent

L = (L,!)

L

L

L

Lemma 2
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Proof

Clearly, (i) implies (ii) and (iii).

To show that (ii) implies (i) let          and define

Now, prove this defines a glb:

RHS set elements are all lbs so the equation 
defines a lb.  Since any lb will be in the set it 
follows that the equation defines the glb.

Similarly, for 

Y ⊆ L
!

Y =
⊔
{l ∈ L | ∀l′ ∈ Y : l # l′}

⊔
Y =

!
{l ∈ L | ∀l′ ∈ Y : l′ # l}
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Moore family

• A Moore family is a subset    of a complete 
lattice                 that is closed under glbs:

• Thus, a Moore family always contains a least 
element,      , and a greatest element,      , 
which equals the greatest element,   , from

• A Moore family is never empty 

Y

L = (L,!)
∀Y ′ ⊆ Y :

!
Y ′ ∈ Y

!
Y

!
∅

! L
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Example 3
L = (P(S),⊆)

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{∅, {1, 2, 3}}
{{2}, {1, 2}, {2, 3}, {1, 2, 3}}

{{1}, {2}}
{∅, {1}, {2}, {1, 2}}

are both Moore families

are not Moore families

Consider the complete lattice
S = {1, 2, 3}

∅
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Properties of functions

• A function                  between posets

                    and

• is onto if

• is 1-1 if

• is monotone if

• is additive if

• is multiplicative if 

f : L1 → L2

L1 = (L1,!1) L2 = (L2,!2)

∀l2 ∈ L2 : ∃l1 ∈ L1 : f(l1) = l2

∀l, l′ ∈ L1 : f(l) = f(l′) ⇒ l = l′

∀l, l′ ∈ L1 : l #1 l′ ⇒ f(l) #2 f(l′)

∀l1, l2 ∈ L1 : f(l1 # l2) = f(l1) # f(l2)

∀l1, l2 ∈ L1 : f(l1 # l2) = f(l1) # f(l2)
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Properties of functions

• The function   is completely additive if for 
all           :

                                      

whenever         exists

• It is completely multiplicative if for all           :

whenever         exists

f(
⊔

1 Y ) =
⊔

2{f(l′) | l′ ∈ Y }

f

⊔
1 Y

Y ⊆ L1

Y ⊆ L1

f(
!

1Y ) =
!

2{f(l′) | l′ ∈ Y }
!

1Y
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Properties of functions

• Clearly         and          exist when     is a 
complete lattice

• When     is not a complete lattice the 
above statements also require the 
appropriate lubs and glbs to exist in 

• The function is affine if for all

whenever         exists (and         )

⊔
1 Y

!
1Y L1

L2

L2

Y ⊆ L1, Y "= ∅

f(
⊔

1Y ) =
⊔

2{f(l′) | l′ ∈ Y }
⊔

1 Y Y != ∅
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Properties of functions

• The function is affine if for all

whenever         exists (and         )

• The function is strict if

• Note that a function is completely additive 
iff it is both affine and strict

f(⊥1) = ⊥2

Y ⊆ L1, Y "= ∅

f(
⊔

1Y ) =
⊔

2{f(l′) | l′ ∈ Y }
⊔

1 Y Y != ∅
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Lemma 4

If                               and                             
are complete lattices and    is finite then the 
three conditions:

(i)                 is monotone

(ii)              , and

(iii)                                         whenever

are jointly equivalent to                being 
completely multiplicative

L = (L,!,",#,⊥,%) M = (M,!,",#,⊥,%)
M

γ : M → L

γ(!) = !

γ(m1 !m2) = γ(m1) ! γ(m2)

γ : M → L
m1 !" m2 ∧m2 !" m1
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Proof

First note that if   is completely multiplicative 
then all three conditions hold.

For the converse note that by monotonicity of     
we have                                         also when

By induction on the (finite) cardinality of            
we prove that

γ

γ

γ(m1 !m2) = γ(m1) ! γ(m2)
m1 ! m2 ∨m2 ! m1

M ′ ⊆ M
γ(

!
M ′) =

!
{γ(m) | m ∈ M ′}
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If the cardinality of     is 0 then the equation 
follows from (ii).  If the cardinality of     is larger 
than 0 then we write                         where      
to ensure that the cardinality of      is strictly 
less than that of     ; hence:

M ′

M ′

M ′ = M ′′ ∪ {m′′} m′′ !∈ M ′′

M ′′

M ′

γ(
!

M ′) = γ((
!

M ′′) !m′′)

= γ(
!

M ′′) ! γ(m′′)

= (
!

{γ(m) | m ∈ M ′′}) ! γ(m′′)

= {γ(m) | m ∈ M ′}
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Lemma 5

A function                                     is affine iff 
there exists a function                     and an 
element                such that

The function   is completely additive iff 
additionally 

ϕ : D → P(E)
f : (P(D),⊆)→ (P(E),⊆)

ϕ∅ ∈ P(E)

f

ϕ∅ = ∅

f(Y ) =
⋃

{ϕ(d) | d ∈ Y } ∪ ϕ∅
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Proof

Suppose   is as displayed and assume        ; then

showing that   is affine.

f Y != ∅⋃
{f(Y ) | Y ∈ Y} =

⋃
{
⋃

{ϕ(d) | d ∈ Y } ∪ ϕ∅ | Y ∈ Y}

=
⋃

{
⋃

{ϕ(d) | d ∈ Y } | Y ∈ Y} ∪ ϕ∅

=
⋃

{ϕ(d) | d ∈
⋃

Y} ∪ ϕ∅

= f(
⋃

Y)

f
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Next, suppose that   is affine and define             
and              .  For               let                           
and note that               and         .  Then

so   can be written in the required form.  
Completely additive follows straightforwardly.

f ϕ(d) = f({d})
ϕ∅ = f(∅) Y ∈ P(D) Y = {{d} | d ∈ Y } ∪ {∅}

Y =
⋃
Y Y != ∅

f(Y ) = f(
⋃

Y)

=
⋃

({f({d}) | d ∈ Y } ∪ {f(∅)})

=
⋃

({ϕ(d) | d ∈ Y } ∪ {ϕ∅})

=
⋃

{ϕ(d) | d ∈ Y } ∪ ϕ∅

f
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An isomorphism from a poset            to a             
poset            is a monotone function                 
such that there exists a (necessarily unique) 
monotone function                    with                   
and                   (where     is the identity 
function over               .

Isomorphism

(L1,!1)
(L2,!2)

θ−1 : L2 → L1

θ : L1 → L2

θ ◦ θ−1 = id2

θ−1 ◦ θ = id1 id i

Li, i = 1, 2
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Construction of 
Complete Lattices

• Complete lattices can be combined to 
construct new complete lattices.

• Cartesian product

• Total function space

• Monotone function space
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Cartesian Product

Let                    and                    be posets.  
Define                              by

and 

It is then straightforward to verify that   is a 
poset.  If additionally each                                   
is a complete lattice then so is                            
and furthermore

and                   and similarly for      and   .

L1 = (L1,!1) L2 = (L2,!2)

L = {(l1, l2) | l1 ∈ L1 ∧ l2 ∈ L2}
(l11, l21) ! (l12, l22) iff l11 ! l12 ∧ l21 ! l22

L

Li = (Li,!i,"i,#i,⊥i,%i)
L = (L,!,",#,⊥,%)

⊔
Y = (

⊔
1{l1 | ∃l2 : (l1, l2) ∈ Y },

⊔
2{l2 | ∃l1 : (l1, l2) ∈ Y })

⊥ = (⊥1,⊥2) !Y !

L = (L,!) = L1 × L2
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Total function space

Let                    be a poset and let    be a set.    
Define                              by

and

It is then straightforward to verify that    is a 
poset.  If additionally                                         
is a complete lattice then so is                              
and furthermore                                         
and                and similarly for      and   .

L1 = (L1,!1) S

L = (L,!) = S → L1

L = {f : S → L1 | f is a total function}
f ! f ′ iff ∀s ∈ S : f(s) !1 f ′(s)

L
L1 = (L1,!1,"1,#1,⊥1,%1)

L = (L,!,",#,⊥,%)⊔
Y = λs.

⊔
1{f(s) | f ∈ Y }

⊥ = λs.⊥1 !Y !
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Monotone function 
space

Let                    and                    be posets. 
Define                               by

and

It is then straightforward to verify that   is a 
poset.  If additionally each                                  
is a complete lattice then so is                            
and furthermore

and                 and similarly for      and   .

L1 = (L1,!1) L2 = (L2,!2)
L = (L,!) = L1 → L2

L = {f : L1 → L2 | f is a monotone function}

L

Li = (Li,!i,"i,#i,⊥i,%i)
L = (L,!,",#,⊥,%)

⊔
Y = λl1.

⊔
2{f(l1) | f ∈ Y }

⊥ = λl1.⊥2 !Y !

f ! f ′ iff ∀l1 ∈ L1 : f(l1) !2 f ′(l1)
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Chains

A subset          of a poset                is a chain if

Thus a chain is a (possibly empty) subset of   
that is totally ordered.  It is a finite chain if it is a 
finite subset of   .

A sequence                       of elements in   is 
an ascending chain if

Writing        also for                 it is clear that 
an ascending chain is also a chain.

Y ⊆ L L = (L,!)

∀l1, l2 ∈ Y : (l1 # l2) ∨ (l2 # l1)

L

L

n ≤ m⇒ ln # lm

(ln)n

(ln)n = (ln)n∈N

{ln | n ∈ N}

L
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Similarly, a sequence       is a descending chain if

and clearly a descending chain is also a chain.

A sequence       eventually stabilizes iff

For        we write           for                    

and similarly we write          for

(ln)n

n ≤ m⇒ ln # lm

(ln)n

(ln)n

⊔
n ln

⊔
{ln | n ∈ N}

!
{ln | n ∈ N}

!
n ln

∃n0 ∈ N : ∀n ∈ N : n ≥ n0 ⇒ ln = l0
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• A poset                has finite height iff all chains 
are finite.

• It has finite height at most h if all chains contain 
at most h+1 elements; it has finite height h if 
additionally there is a chain with h+1 elements. 

• The poset satisfies the Ascending Chain Condition 
iff all ascending chains eventually stabilize.  
Similarly, it satisfies the Descending Chain 
Condition iff all descending chains eventually 
stabilize.

Ascending Chain and 
Descending Chain Conditions

L = (L,!)
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Lemma 6

A poset                has finite height iff it satisfies 
both the Ascending and Descending Chain 
Conditions.

L = (L,!)
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Proof

First assume that   has finite height.  If       is an 
ascending chain then it must be a finite chain 
and hence eventually stabilize; thus   satisfies 
the Ascending Chain Condition.  Similarly for 
the Descending Chain Condition.

L (ln)n

L
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Next assume that   satisfies both the Ascending 
and Descending Chain Conditions, and consider 
a chain         .  We prove that   is a finite chain.  
This is obvious if   is empty so assume it is not.  
Then also         is a non-empty poset satisfying 
the Ascending and Descending Chain 
Conditions.

L

Y ⊆ L Y

Y

(Y,!)
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As an auxiliary result we now show that

each non-empty           contains a least 
element

Construct a descending chain       in     as 
follows: first let    be an arbitrary element 
of    .  For the inductive step let             if    is 
the least element of    ; otherwise we can           
find              such that                             .  
Clearly       is a descending chain in   ; since    
satisfies the Descending Chain Condition the 
chain will eventually stabilize:                                 
i.e.                                 and the construction 
is such that     is the least element of    .

(l′n)n Y ′

l′0
Y ′ l′n+1 = l′n l′n

Y ′

l′n+1 ∈ Y ′ l′n+1 ! l′n ∧ l′n+1 #= l′n
(l′n)n Y Y

∃n′
0 : ∀n ≥ n′

0 : l′n = l′n′
0

l′n′
0

Y ′

Y ′ ⊆ Y
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Back to the main proof: construct an ascending 
chain       in   .  Using the side result each    is 
chosen as the least element of the                     
set                         as long as the latter set is 
non-empty, and this yields                             ; 
when                        is empty set             , and 
since          we know that        .  Thus we have 
an ascending chain in   and using the Ascending 
Chain Condition we have                                .  
But this means that                            since this 
is the only way that we can achieve               .  
It follows that    is finite.

(ln)n Y ln

Y \ {l0, . . . , ln−1}
ln−1 ! ln ∧ ln−1 #= ln

Y \ {l0, . . . , ln−1} ln = ln−1

Y != ∅ n > 0
Y

∃n0 : ∀n ≥ n0 : ln = ln0

Y \ {l0, . . . , ln0} = ∅
ln0+1 = ln0

Y
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•   0

• –1

• –2

• –!

Ascending Chain but does not 

have finite height

• !

• 2

• 1

• 0

Descending Chain but does 

not have finite height

Example 7

...

...
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Preservation

• If     and     each satisfy one of the 
conditions finite height, ascending chain, 
descending chain then            also satisfies 
that condition.

• If    is finite then          preserves the 
conditions of   .

•             does not in general preserve the 
conditions.

L1 L2

L1 × L2

S → L
L

S

L1 → L2
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Lemma 8

For a poset                the conditions

(i)    is a complete lattice satisfying the 
Ascending Chain Condition, and

(ii)   has a least element,   , and binary lubs and 
satisfies the Ascending Chain Condition

are equivalent.

L = (L,!)

L

L ⊥
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Proof

It is immediate that (i) implies (ii) so we prove 
that (ii) implies (i).  Using Lemma 2 it suffices to 
prove that all subsets   of    have a lub       .  If    
is empty clearly              .  If    is finite and non-
empty then we can write                        for      
and it follows that                                          .

Y L
⊔

Y Y⊔
Y = ⊥ Y

Y = {y1, . . . , yn} n ≥ 1⊔
Y = (. . . (y1 ! y2) ! . . .) ! yn
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If   is infinite then construct        of elements      
of   : let    be an arbitrary element    of    and 
given    take              in the case                                    
and take                       in the case where          
some              satisfies              .  Clearly this 
sequence is an ascending chain.  Since   satisfies 
the Ascending Chain Condition it follows that 
the chain eventually stabilizes:                             
i.e.,                                                                  
This means that                      because if           
then                for a contradiction.  So we have 
constructed an upper bound for   .  Since it is 
the lub for                       it is also the lub for  .

Y (ln)n

L l0 y0 Y

ln ln+1 = ln ∀y ∈ Y : y # ln
ln+1 = ln ! yn+1

yn+1 ∈ Y yn+1 !" ln
L

∃n : ln = ln + 1 = . . .

∀y ∈ Y : y # ln y !" ln
ln != ln " y

Y

{y0, . . . , yn} ⊆ Y Y
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For a complete lattice                satisfying the 
Ascending Chain Condition and a total              
function              , the conditions

(i)   is additive
i.e.                                            , and

(ii)   is affine
i.e. 

are equivalent and in both cases   is a monotone 
function.

Lemma 9

L = (L,!)

f : L→ L

f

∀l1, l2 : f(l1 " l2) = f(l1) " f(l2)

f

∀Y ⊆ L, Y #= ∅ : f(
⊔

Y ) =
⊔

{f(l) | l ∈ Y }

f
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Proof

It is immediate that (ii) implies (i): take                             
Also, (i) implies that   is monotone since              
is equivalent to                .
Next, suppose that   satisfies (i) and prove (ii).  
If    is finite write                        for         and

Y = {l1, l2}
f l1 ! l2

l1 ! l2 = l2
f

Y n ≥ 1Y = {y1, . . . , yn}
f(

⊔
Y ) = f(y1 ! . . . ! yn) = f(y1) ! . . . ! f(yn)

"
⊔

{f(l) | l ∈ Y }
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If    is infinite then the construction of the 
proof of Lemma 8 gives              and                   
for some          and              .  Then

Furthermore

follows from the monotonicity of   .
This completes the proof.

Y ⊔
Y = ln ln = yn ! . . . ! y0

yi ∈ Y 0 ≤ i ≤ n

f(
⊔

Y ) = f(ln) = f(yn ! . . . ! y0)

= f(yn) ! . . . ! f(y0)

"
⊔

{f(l) | l ∈ Y }

f(
⊔

Y ) !
⊔

{f(l) | l ∈ Y }
f
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• Consider a monotone function              on 
a complete lattice                              .  A 
fixed point of   is an element                     . 
Write                                for the set of 
fixed points.

•   is reductive at   iff           . 
Write                                for the set of 
elements on which  is reductive, and say 
that   itself is reductive if                 .

Fixed points

f : L→ L

L = (L,!,",#,⊥,%)
f l ∈ L : f(l) = l

Fix (f) = {l | f(l) = l}

l f(l) ! l

Red(f) = {l | f(l) ! l}
f

f

f Red(f) = L
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• Similarly,   is extensive at   iff           .
Write                                for the set of 
elements on which  is extensive, and say 
that   itself is extensive if                .

• Since   is a complete lattice it is always the 
case that           will have a glb in   :

Similarly,           will have a lub in   :

• Tarski’s Fixed Point Theorem establishes that
        is the least fixed point of   and that
is the greatest fixed point of  .

f l f(l) ! l

Ext(f) = {l | f(l) ! l}
f

f Ext(f) = L

L

Fix (f) L

lfp(f) =
!

Fix (f)
Fix (f) L

gfp(f) =
⊔

Fix (f)

lfp(f) f gfp(f)
f
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Let                               be a complete lattice.  
If               is a monotone function then
and          satisfy:

Proposition 10
Tarski’s Fixed Point Theorem
L = (L,!,",#,⊥,%)

f : L→ L lfp(f)
gfp(f)

lfp(f) =
!

Red(f) ∈ Fix (f)

gfp(f) =
⊔

Ext(f) ∈ Fix (f)
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Proof

For         define                     .  First show that
              so that                .  Since
and   is monotone we have

and hence             . 
To prove              observe that
showing that                     and hence
by definition of   .  Together this shows that   is 
a fixed point of   and so               .  To see that
   is least in          note that                        so
              .  Similarly for         .

lfp(f) l0 =
!

Red(f)
f(l0) ! l0 l0 ∈ Red(f) l0 ! l ∀l ∈ Red(f)

f
f(l0) ! f(l) ! l, ∀l ∈ Red

f(l0) ! l0
l0 ! f(l0) f(f(l0)) ! f(l0)

f(l0) ∈ Red(f) l0 ! f(l0)
l0 l0
f l0 ∈ Fix (f)

l0 Fix (f) Fix (f) ⊆ Red(f)
lfp(f) = l0 gfp(f)
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Iteration

Iterating to the lfp by taking the lub of the 
sequence             implies need for continuity of
  (i.e.                                 for all ascending 
chains       ), and similarly for the glb.  One can 
show that

However, if    satisfies the Ascending Chain 
Condition then                               and hence
                .  Similarly for         .

(fn(⊥))n

f(
⊔

nln) =
⊔

n(f(ln))f

(ln)n

⊥ " fn(⊥) "
⊔

nfn(⊥) " lfp(f)

" gfp(f) "
!

nfn(#) " fn(#) " #
L

∃n : fn(⊥) = fn+1(⊥)
lfp = fn(⊥) gfp(f)
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Fix (f)

Red(f)

Ext(f)

!

fn(!)

!
nfn(!)

gfp(f)

lfp(f)

⊔
nfn(⊥)

fn(⊥)

⊥
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