Partially Ordered Sets

Background for Program Analysis

Wednesday, November 14, 2007

Partial ordering

- A partial ordering is a relation: $\sqsubseteq: L \times L \rightarrow \{ true, false \}$
- that is:
 - reflexive: $\forall l : l \sqsubseteq l$
 - *transitive*: $\forall l_1, l_2, l_3 : l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_3 \Rightarrow l_1 \sqsubseteq l_3$
 - anti-symmetric: $\forall l_1, l_2 : l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_1 \Rightarrow l_1 = l_2$

Partially ordered set

• A partially ordered set (L, \sqsubseteq)

is a set L equipped with a partial ordering \sqsubseteq

- $l_2 \sqsupseteq l_1 \equiv l_1 \sqsubseteq l_2$
- $l_1 \sqsubset l_2 \equiv l_1 \sqsubseteq l_2 \land l_1 \neq l_2$

Wednesday, November 14, 2007

Bounds

3

4

• $Y \subseteq L$ has $l \in L$ as an upper bound if

 $\forall l' \in Y: l' \sqsubseteq l$

and $l \in L$ as a lower bound if

 $\forall l' \in Y : l' \sqsupseteq l$

Least upper bound

- A least upper bound l of Y is an upper bound of Y that satisfies l ⊑ l₀ whenever l₀ is another upper bound of Y
- A subset Y need not have a least upper bound but if one exists then it is unique (since ⊑ is anti-symmetric)
- The least upper bound of Y is written $\bigsqcup Y$
- $l_1 \sqcup l_2 \equiv \bigsqcup \{l_1, l_2\}$

Wednesday, November 14, 2007

Greatest lower bound

- A greatest lower bound l of Y is a lower bound of Y that satisfies l₀ ⊑ l whenever l₀ is another lower bound of Y
- A subset Y need not have a greatest lower bound but if one exists then it is unique (since ⊑ is anti-symmetric)
- The greatest lower bound of Y is written $\prod Y$
- $l_1 \sqcap l_2 \equiv \prod \{l_1, l_2\}$

Complete lattice

- A complete lattice L = (L, ⊑) = (L, ⊑, □, ∐, ⊥, ⊤) is a partially ordered set (L, ⊑) where all subsets have an lub and a glb
- $\bot = \bigsqcup \emptyset = \bigsqcup L$ is the least element
- $\top = \prod \emptyset = \bigsqcup L$ is the greatest element

Wednesday, November 14, 2007

Example

both are complete lattices

Example I

Wednesday, November 14, 2007

Lemma 2

For a partially ordered set $L = (L, \sqsubseteq)$ the claims:

- (i) L is a complete lattice
- (ii) every subset of L has a lub
- (iii) every subset of L has a glb
- are equivalent

Proof

Clearly, (i) implies (ii) and (iii).

To show that (ii) implies (i) let $Y \subseteq L$ and define $\prod Y = \bigsqcup \{l \in L \mid \forall l' \in Y : l \sqsubseteq l'\}$

Now, prove this defines a glb:

RHS set elements are all lbs so the equation defines a lb. Since any lb will be in the set it follows that the equation defines the glb.

Similarly, for $\bigsqcup Y = \bigsqcup \{l \in L \mid \forall l' \in Y : l' \sqsubseteq l\}$

Wednesday, November 14, 2007

Moore family

- A Moore family is a subset Y of a complete lattice $L = (L, \sqsubseteq)$ that is closed under glbs: $\forall Y' \subseteq Y : \prod Y' \in Y$
- Thus, a Moore family always contains a least element, $\prod Y$, and a greatest element, $\prod \emptyset$, which equals the greatest element, \top , from L
- A Moore family is never empty

Example 3

Consider the complete lattice $L = (\mathcal{P}(S), \subseteq)$ $S = \{1, 2, 3\}$ $\{1, 2, 3\}$ $\{1, 2, 3\}$ $\{2, 3\}$ $\{0, \{1, 2, 3\}\}$ $\{0, \{1, 2, 3\}\}$ are both Moore families $\{1, 2, 3\}$ $\{0, \{1, 2, 3\}\}$ $\{1, 2, 3\}$ $\{0, \{1, 2, 3\}\}$ $\{0, \{1\}, \{2\}\}$ $\{1, 2\}$

Wednesday, November 14, 2007

Properties of functions

• A function $f: L_1 \rightarrow L_2$ between posets

$$L_1 = (L_1, \sqsubseteq_1)$$
 and $L_2 = (L_2, \sqsubseteq_2)$

- is onto if $\forall l_2 \in L_2 : \exists l_1 \in L_1 : f(l_1) = l_2$
- is I-I if $\forall l, l' \in L_1 : f(l) = f(l') \Rightarrow l = l'$
- is monotone if $\forall l, l' \in L_1 : l \sqsubseteq_1 l' \Rightarrow f(l) \sqsubseteq_2 f(l')$
- is additive if $\forall l_1, l_2 \in L_1 : f(l_1 \sqcup l_2) = f(l_1) \sqcup f(l_2)$
 - is multiplicative if $\forall l_1, l_2 \in L_1 : f(l_1 \sqcap l_2) = f(l_1) \sqcap f(l_2)$

Properties of functions

• The function f is completely additive if for all $Y \subseteq L_1$:

 $f(\bigsqcup_1 Y) = \bigsqcup_2 \{f(l') \mid l' \in Y\}$

whenever $\bigsqcup_1 Y$ exists

• It is completely multiplicative if for all $Y \subseteq L_1$: $f(\prod_1 Y) = \prod_2 \{f(l') \mid l' \in Y\}$

whenever $\prod_{1} Y$ exists

Wednesday, November 14, 2007

Properties of functions

- Clearly $\bigsqcup_1 Y$ and $\bigsqcup_1 Y$ exist when L_1 is a complete lattice
- When L_2 is not a complete lattice the above statements also require the appropriate lubs and glbs to exist in L_2
- The function is affine if for all Y ⊆ L₁, Y ≠ Ø
 f(□₁Y) = □₂{f(l') | l' ∈ Y}
 whenever □₁ Y exists (and Y ≠ Ø)

```
Wednesday, November 14, 2007
```

Properties of functions

• The function is affine if for all $Y \subseteq L_1, Y \neq \emptyset$ $f(\bigsqcup_1 Y) = \bigsqcup_2 \{ f(l') \mid l' \in Y \}$

whenever $\bigsqcup_1 Y$ exists (and $Y \neq \emptyset$)

- The function is strict if $f(\perp_1) = \perp_2$
- Note that a function is completely additive iff it is both affine and strict

Wednesday, November 14, 2007

Lemma 4

If $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ and $M = (M, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ are complete lattices and *M* is finite then the three conditions:

- (i) $\gamma: M \to L$ is monotone
- (ii) $\gamma(\top) = \top$, and

(iii) $\gamma(m_1 \sqcap m_2) = \gamma(m_1) \sqcap \gamma(m_2)$ whenever $m_1 \not\sqsubseteq m_2 \land m_2 \not\sqsubseteq m_1$ are jointly equivalent to $\gamma: M \to L$ being completely multiplicative

Proof

First note that if γ is completely multiplicative then all three conditions hold.

For the converse note that by monotonicity of γ we have $\gamma(m_1 \sqcap m_2) = \gamma(m_1) \sqcap \gamma(m_2)$ also when $m_1 \sqsubseteq m_2 \lor m_2 \sqsubseteq m_1$ By induction on the (finite) cardinality of $M' \subseteq M$ we prove that $\gamma(\bigcap M') = \bigcap \{\gamma(m) \mid m \in M'\}$

Wednesday, November 14, 2007

If the cardinality of M' is 0 then the equation follows from (ii). If the cardinality of M' is larger than 0 then we write $M' = M'' \cup \{m''\}$ where $m'' \notin M''$ to ensure that the cardinality of M'' is strictly less than that of M'; hence:

$$\gamma(\bigcap M') = \gamma((\bigcap M'') \sqcap m'')$$

= $\gamma(\bigcap M'') \sqcap \gamma(m'')$
= $(\bigcap \{\gamma(m) \mid m \in M''\}) \sqcap \gamma(m'')$
= $\{\gamma(m) \mid m \in M'\}$

Lemma 5

A function $f : (\mathcal{P}(D), \subseteq) \to (\mathcal{P}(E), \subseteq)$ is affine iff there exists a function $\varphi : D \to \mathcal{P}(E)$ and an element $\varphi_{\emptyset} \in \mathcal{P}(E)$ such that $f(Y) = \bigcup \{\varphi(d) \mid d \in Y\} \cup \varphi_{\emptyset}$

The function f is completely additive iff additionally $\varphi_{\emptyset} = \emptyset$

Wednesday, November 14, 2007

Proof

Suppose *f* is as displayed and assume $\mathcal{Y} \neq \emptyset$; then $\bigcup \{ f(Y) \mid Y \in \mathcal{Y} \} = \bigcup \{ \bigcup \{ \varphi(d) \mid d \in Y \} \cup \varphi_{\emptyset} \mid Y \in \mathcal{Y} \}$ $= \bigcup \{ \bigcup \{ \varphi(d) \mid d \in Y \} \mid Y \in \mathcal{Y} \} \cup \varphi_{\emptyset}$ $= \bigcup \{ \varphi(d) \mid d \in \bigcup \mathcal{Y} \} \cup \varphi_{\emptyset}$ $= f(\bigcup \mathcal{Y})$

showing that f is affine.

Next, suppose that f is affine and define $\varphi(d) = f(\{d\})$ and $\varphi_{\emptyset} = f(\emptyset)$. For $Y \in \mathcal{P}(D)$ let $\mathcal{Y} = \{\{d\} \mid d \in Y\} \cup \{\emptyset\}$ and note that $Y = \bigcup \mathcal{Y}$ and $\mathcal{Y} \neq \emptyset$. Then $f(Y) = f(\bigcup \mathcal{Y})$ $= \bigcup (\{f(\{d\}) \mid d \in Y\} \cup \{f(\emptyset)\})$ $= \bigcup (\{\varphi(d) \mid d \in Y\} \cup \{\varphi_{\emptyset}\})$ $= \bigcup \{\varphi(d) \mid d \in Y\} \cup \varphi_{\emptyset}$

so *f* can be written in the required form. Completely additive follows straightforwardly.

Wednesday, November 14, 2007

Isomorphism

An isomorphism from a poset (L_1, \sqsubseteq_1) to a poset (L_2, \sqsubseteq_2) is a monotone function $\theta : L_1 \to L_2$ such that there exists a (necessarily unique) monotone function $\theta^{-1} : L_2 \to L_1$ with $\theta \circ \theta^{-1} = id_2$ and $\theta^{-1} \circ \theta = id_1$ (where id_i is the identity function over $L_i, i = 1, 2$.

Construction of Complete Lattices

- Complete lattices can be combined to construct new complete lattices.
- Cartesian product
- Total function space
- Monotone function space

Wednesday, November 14, 2007

Cartesian Product

Let $L_1 = (L_1, \sqsubseteq_1)$ and $L_2 = (L_2, \sqsubseteq_2)$ be posets. Define $L = (L, \sqsubseteq) = L_1 \times L_2$ by $L = \{(l_1, l_2) \mid l_1 \in L_1 \land l_2 \in L_2\}$ and $(l_{11}, l_{21}) \sqsubseteq (l_{12}, l_{22})$ iff $l_{11} \sqsubseteq l_{12} \land l_{21} \sqsubseteq l_{22}$

It is then straightforward to verify that L is a poset. If additionally each $L_i = (L_i, \sqsubseteq_i, \sqcup_i, \sqcap_i, \bot_i, \top_i)$ is a complete lattice then so is $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ and furthermore

and $\bot = (\bot_1, \bot_2)$ and similarly for $\sqcap Y$ and \top .

Total function space

Let $L_1 = (L_1, \sqsubseteq_1)$ be a poset and let S be a set. Define $L = (L, \boxdot) = S \rightarrow L_1$ by and $L = \{f : S \rightarrow L_1 \mid f \text{ is a total function}\}$ $f \sqsubseteq f' \text{ iff } \forall s \in S : f(s) \sqsubseteq_1 f'(s)$ It is then straightforward to verify that L is a poset. If additionally $L_1 = (L_1, \bigsqcup_1, \bigsqcup_1, \sqcap_1, \bot_1, \intercal_1)$ is a complete lattice then so is $L = (L, \bigsqcup, \sqcup, \sqcap, \bot, \intercal)$ and furthermore $\bigsqcup Y = \lambda s. \bigsqcup_1 \{f(s) \mid f \in Y\}$ and $\bot = \lambda s. \bot_1$ and similarly for $\sqcap Y$ and \intercal .

Wednesday, November 14, 2007

Monotone function

space

Let $L_1 = (L_1, \sqsubseteq_1)$ and $L_2 = (L_2, \sqsubseteq_2)$ be posets. Define $L = (L, \boxdot) = L_1 \rightarrow L_2$ by and $\begin{array}{c} L = \{f : L_1 \rightarrow L_2 \mid f \text{ is a monotone function}\} \\ f \sqsubseteq f' \text{ iff } \forall l_1 \in L_1 : f(l_1) \sqsubseteq_2 f'(l_1) \end{array}$ It is then straightforward to verify that *L* is a poset. If additionally each $L_i = (L_i, \sqsubseteq_i, \sqcup_i, \sqcap_i, \bot_i, \intercal_i)$ is a complete lattice then so is $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \intercal)$ and furthermore

 $\bigsqcup Y = \lambda l_1. \bigsqcup_2 \{ f(l_1) \mid f \in Y \}$

and $\bot = \lambda l_1 . \bot_2$ and similarly for $\sqcap Y$ and \top .

Chains

A subset $Y \subseteq L$ of a poset $L = (L, \sqsubseteq)$ is a *chain* if

 $\forall l_1, l_2 \in Y : (l_1 \sqsubseteq l_2) \lor (l_2 \sqsubseteq l_1)$

Thus a chain is a (possibly empty) subset of L that is totally ordered. It is a *finite chain* if it is a finite subset of L.

A sequence $(l_n)_n = (l_n)_{n \in \mathbb{N}}$ of elements in *L* is an ascending chain if $n \leq m \Rightarrow l_n \sqsubseteq l_m$

Writing $(l_n)_n$ also for $\{l_n \mid n \in \mathbb{N}\}$ it is clear that an ascending chain is also a chain.

Wednesday, November 14, 2007

Similarly, a sequence $(l_n)_n$ is a descending chain if $n \le m \Rightarrow l_n \sqsupseteq l_m$

and clearly a descending chain is also a chain.

A sequence $(l_n)_n$ eventually stabilizes iff

$$\exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N} : n \ge n_0 \Rightarrow l_n = l_0$$

For $(l_n)_n$ we write $\bigsqcup_n l_n$ for $\bigsqcup_n \{l_n \mid n \in \mathbb{N}\}$

and similarly we write $\prod_n l_n$ for $\prod \{l_n \mid n \in \mathbb{N}\}$

Ascending Chain and Descending Chain Conditions

- A poset $L = (L, \sqsubseteq)$ has finite height iff all chains are finite.
- It has finite height at most h if all chains contain at most h+1 elements; it has finite height h if additionally there is a chain with h+1 elements.
- The poset satisfies the Ascending Chain Condition iff all ascending chains eventually stabilize. Similarly, it satisfies the Descending Chain Condition iff all descending chains eventually stabilize.

Wednesday, November 14, 2007

Lemma 6

A poset $L = (L, \sqsubseteq)$ has finite height iff it satisfies both the Ascending and Descending Chain Conditions.

Proof

First assume that L has finite height. If $(l_n)_n$ is an ascending chain then it must be a finite chain and hence eventually stabilize; thus L satisfies the Ascending Chain Condition. Similarly for the Descending Chain Condition.

Wednesday, November 14, 2007

Next assume that L satisfies both the Ascending and Descending Chain Conditions, and consider a chain $Y \subseteq L$. We prove that Y is a finite chain. This is obvious if Y is empty so assume it is not. Then also (Y, \sqsubseteq) is a non-empty poset satisfying the Ascending and Descending Chain Conditions. As an auxiliary result we now show that

each non-empty $Y' \subseteq Y$ contains a least element

Construct a descending chain $(l'_n)_n$ in Y' as follows: first let l'_0 be an arbitrary element of Y'. For the inductive step let $l'_{n+1} = l'_n$ if l'_n is the least element of Y'; otherwise we can find $l'_{n+1} \in Y'$ such that $l'_{n+1} \sqsubseteq l'_n \wedge l'_{n+1} \neq l'_n$. Clearly $(l'_n)_n$ is a descending chain in Y; since Ysatisfies the Descending Chain Condition the chain will eventually stabilize: i.e. $\exists n'_0 : \forall n \ge n'_0 : l'_n = l'_{n'_0}$ and the construction is such that $l'_{n'_0}$ is the least element of Y'.

Wednesday, November 14, 2007

Back to the main proof: construct an ascending chain $(l_n)_n$ in Y. Using the side result each l_n is chosen as the least element of the set $Y \setminus \{l_0, \ldots, l_{n-1}\}$ as long as the latter set is non-empty, and this yields $l_{n-1} \sqsubseteq l_n \land l_{n-1} \neq l_n$; when $Y \setminus \{l_0, \ldots, l_{n-1}\}$ is empty set $l_n = l_{n-1}$, and since $Y \neq \emptyset$ we know that n > 0. Thus we have an ascending chain in Y and using the Ascending Chain Condition we have $\exists n_0 : \forall n \ge n_0 : l_n = l_{n_0}$. But this means that $Y \setminus \{l_0, \ldots, l_{n_0}\} = \emptyset$ since this is the only way that we can achieve $l_{n_0+1} = l_{n_0}$. It follows that Y is finite.

Example 7

Ascending Chain but does not have finite height

Descending Chain but does not have finite height

```
Wednesday, November 14, 2007
```

Preservation

- If L_1 and L_2 each satisfy one of the conditions finite height, ascending chain, descending chain then $L_1 \times L_2$ also satisfies that condition.
- If S is finite then $S \to L$ preserves the conditions of L.
- $L_1 \rightarrow L_2$ does not in general preserve the conditions.

Lemma 8

For a poset $L = (L, \sqsubseteq)$ the conditions

(i) *L* is a complete lattice satisfying the Ascending Chain Condition, and

(ii) L has a least element, \perp , and binary lubs and satisfies the Ascending Chain Condition

are equivalent.

Wednesday, November 14, 2007

Proof

It is immediate that (i) implies (ii) so we prove that (ii) implies (i). Using Lemma 2 it suffices to prove that all subsets Y of L have a lub $\bigcup Y$. If Y is empty clearly $\bigcup Y = \bot$. If Y is finite and nonempty then we can write $Y = \{y_1, \ldots, y_n\}$ for $n \ge 1$ and it follows that $\bigcup Y = (\ldots (y_1 \sqcup y_2) \sqcup \ldots) \sqcup y_n$.

If *Y* is infinite then construct $(l_n)_n$ of elements of *L*: let l_0 be an arbitrary element y_0 of *Y* and given l_n take $l_{n+1} = l_n$ in the case $\forall y \in Y : y \sqsubseteq l_n$ and take $l_{n+1} = l_n \sqcup y_{n+1}$ in the case where some $y_{n+1} \in Y$ satisfies $y_{n+1} \not\sqsubseteq l_n$. Clearly this sequence is an ascending chain. Since *L* satisfies the Ascending Chain Condition it follows that the chain eventually stabilizes: i.e., $\exists n : l_n = l_n + 1 = \dots$

This means that $\forall y \in Y : y \sqsubseteq l_n$ because if $y \not\sqsubseteq l_n$ then $l_n \neq l_n \sqcup y$ for a contradiction. So we have constructed an upper bound for Y. Since it is the lub for $\{y_0, \ldots, y_n\} \subseteq Y$ it is also the lub for Y.

Wednesday, November 14, 2007

Lemma 9

For a complete lattice $L = (L, \sqsubseteq)$ satisfying the Ascending Chain Condition and a total function $f: L \to L$, the conditions

(i) *f* is additive i.e. $\forall l_1, l_2 : f(l_1 \sqcup l_2) = f(l_1) \sqcup f(l_2)$, and

(ii) f is affine i.e. $\forall Y \subseteq L, Y \neq \emptyset : f(\bigsqcup Y) = \bigsqcup \{f(l) \mid l \in Y\}$

are equivalent and in both cases f is a monotone function.

Proof

It is immediate that (ii) implies (i): take $Y = \{l_1, l_2\}$ Also, (i) implies that f is monotone since $l_1 \sqsubseteq l_2$ is equivalent to $l_1 \sqcup l_2 = l_2$. Next, suppose that f satisfies (i) and prove (ii). If Y is finite write $Y = \{y_1, \ldots, y_n\}$ for $n \ge 1$ and $f(\bigsqcup Y) = f(y_1 \sqcup \ldots \sqcup y_n) = f(y_1) \sqcup \ldots \sqcup f(y_n)$ $\sqsubseteq \bigsqcup \{f(l) \mid l \in Y\}$

Wednesday, November 14, 2007

If Y is infinite then the construction of the proof of Lemma 8 gives $\bigsqcup Y = l_n$ and $l_n = y_n \sqcup \ldots \sqcup y_0$ for some $y_i \in Y$ and $0 \le i \le n$. Then $f(\bigsqcup Y) = f(l_n) = f(y_n \sqcup \ldots \sqcup y_0)$ $= f(y_n) \sqcup \ldots \sqcup f(y_0)$ $\sqsubseteq \bigsqcup \{f(l) \mid l \in Y\}$

Furthermore

 $f(\bigsqcup Y) \sqsupseteq \bigsqcup \{f(l) \mid l \in Y\}$

follows from the monotonicity of f. This completes the proof.

Fixed points

- Consider a monotone function f : L → L on a complete lattice L = (L, ⊑, ⊔, ⊓, ⊥, ⊤). A fixed point of f is an element l ∈ L : f(l) = l. Write Fix(f) = {l | f(l) = l} for the set of fixed points.
- f is reductive at l iff $f(l) \sqsubseteq l$. Write $Red(f) = \{l \mid f(l) \sqsubseteq l\}$ for the set of elements on which f is reductive, and say that f itself is reductive if Red(f) = L.

Wednesday, November 14, 2007

- Similarly, f is extensive at l iff f(l) ⊒ l.
 Write Ext(f) = {l | f(l) ⊒ l} for the set of elements on which f is extensive, and say that f itself is extensive if Ext(f) = L.
- Since L is a complete lattice it is always the case that Fix(f) will have a glb in L: $lfp(f) = \bigcap Fix(f)$ Similarly, Fix(f) will have a lub in L: $gfp(f) = \bigsqcup Fix(f)$
- Tarski's Fixed Point Theorem establishes that *lfp(f)* is the *least fixed point* of *f* and that *gfp(f)* is the greatest fixed point of *f*.

Proposition 10 Tarski's Fixed Point Theorem

Let $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ be a complete lattice. If $f : L \to L$ is a monotone function then lfp(f)and gfp(f) satisfy:

 $lfp(f) = \bigcap Red(f) \in Fix(f)$ $gfp(f) = \bigsqcup Ext(f) \in Fix(f)$

Wednesday, November 14, 2007

Proof

For lfp(f) define $l_0 = \bigcap Red(f)$. First show that $f(l_0) \sqsubseteq l_0$ so that $l_0 \in Red(f)$. Since $l_0 \sqsubseteq l \ \forall l \in Red(f)$ and f is monotone we have

 $f(l_0) \sqsubseteq f(l) \sqsubseteq l, \forall l \in Red$

and hence $f(l_0) \sqsubseteq l_0$.

To prove $l_0 \sqsubseteq f(l_0)$ observe that $f(f(l_0)) \sqsubseteq f(l_0)$ showing that $f(l_0) \in Red(f)$ and hence $l_0 \sqsubseteq f(l_0)$ by definition of l_0 . Together this shows that l_0 is a fixed point of f and so $l_0 \in Fix(f)$. To see that l_0 is least in Fix(f) note that $Fix(f) \subseteq Red(f)$ so $lfp(f) = l_0$. Similarly for gfp(f).

Iteration

Iterating to the lfp by taking the lub of the sequence $(f^n(\perp))_n$ implies need for continuity of f (i.e. $f(\bigsqcup_n l_n) = \bigsqcup_n (f(l_n))$ for all ascending chains $(l_n)_n$), and similarly for the glb. One can show that

 $\perp \sqsubseteq f_n(\perp) \sqsubseteq \bigsqcup_n f_n(\perp) \sqsubseteq lfp(f)$

 $\sqsubseteq gfp(f) \sqsubseteq \bigcap_{n} f^{n}(\top) \sqsubseteq f^{n}(\top) \sqsubseteq \top$

However, if L satisfies the Ascending Chain Condition then $\exists n : f^n(\bot) = f^{n+1}(\bot)$ and hence $lfp = f^n(\bot)$. Similarly for gfp(f).

Wednesday, November 14, 2007

