
Register allocation

errors

selectionIR machine
code

instruction register
allocation

Register allocation:

• have value in a register when used
• limited resources
• changes instruction choices
• can move loads and stores
• optimal allocation is difficult
⇒ NP-complete for k ≥ 1 registers

Copyright c©2007 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request
permission to publish from hosking@cs.purdue.edu.

CS502 Register allocation 1

Liveness analysis

Problem:

• IR contains an unbounded number of temporaries
• machine has bounded number of registers

Approach:

• temporaries with disjoint live ranges can map to same register
• if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:

It is live if it holds a value that may be needed in future

CS502 Register allocation 2

Control flow analysis

Before performing liveness analysis, need to understand the control flow by

building a control flow graph (CFG):

• nodes may be individual program statements or basic blocks

• edges represent potential flow of control

Out-edges from node n lead to successor nodes, succ[n]
In-edges to node n come from predecessor nodes, pred[n]
Example:

a← 0

L1 : b← a+1
c← c+b

a← b×2
if a< N goto L1
return c

CS502 Register allocation 3

Liveness analysis

Gathering liveness information is a form of data flow analysis operating over the
CFG:

• liveness of variables “flows” around the edges of the graph
• assignments define a variable, v:

– def(v) = set of graph nodes that define v

– def[n] = set of variables defined by n

• occurrences of v in expressions use it:
– use(v) = set of nodes that use v

– use[n] = set of variables used in n

Liveness: v is live on edge e if there is a directed path from e to a use of v that
does not pass through any def(v)

v is live-in at node n if live on any of n’s in-edges

v is live-out at n if live on any of n’s out-edges

v ∈ use[n] ⇒ v live-in at n

v live-in at n⇒ v live-out at all m ∈ pred[n]

v live-out at n,v #∈ def[n] ⇒ v live-in at n

CS502 Register allocation 4

Liveness analysis

Define:
in[n]: variables live-in at n

in[n]: variables live-out at n

Then:

out[n] =
[

s∈succ(n)
in[s]

succ[n] = !⇒ out[n] = !

Note:

in[n] ⊇ use[n]

in[n] ⊇ out[n]−def[n]

use[n] and def[n] are constant (independent of control flow)

Now, v ∈ in[n] iff. v ∈ use[n] or v ∈ out[n]−def[n]

Thus, in[n] = use[n]∪ (out[n]−def[n])
CS502 Register allocation 5

Iterative solution for liveness

foreach n

in[n] ← !

out [n] ← !

repeat

foreach n

in′[n] ← in[n];
out ′[n] ← out [n];
in[n] ← use[n]∪ (out [n]−def [n])
out [n] ←

S
s∈succ[n] in[s]

until in′[n] = in[n] ∧ out ′[n] = out [n],∀n

Notes:

• should order computation of inner loop to follow the “flow”
• liveness flows backward along control-flow arcs, from out to in
• nodes can just as easily be basic blocks to reduce CFG size
• could do one variable at a time, from uses back to defs, noting liveness along
the way

CS502 Register allocation 6

Iterative solution for liveness

Complexity : for input program of size N

• ≤ N nodes in CFG
⇒≤ N variables
⇒ N elements per in/out
⇒ O(N) time per set-union

• for loop performs constant number of set operations per node
⇒ O(N2) time for for loop

• each iteration of repeat loop can only add to each set
sets can contain at most every variable

⇒ sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

⇒ worst-case complexity of O(N4)
• ordering can cut repeat loop down to 2-3 iterations
⇒ O(N) or O(N2) in practice

CS502 Register allocation 7

Least fixed points

There is often more than one solution for a given dataflow problem (see example).

Any solution to dataflow equations is a conservative approximation:

• v has some later use downstream from n

⇒ v ∈ out(n)

• but not the converse

Conservatively assuming a variable is live does not break the program; just means

more registers may be needed.

Assuming a variable is dead when it is really live will break things.

May be many possible solutions but want the “smallest”: the least fixpoint.

The iterative liveness computation computes this least fixpoint.

CS502 Register allocation 8

Register allocation

errors

selectionIR machine
code

instruction register
allocation

Register allocation:

• have value in a register when used
• limited resources
• changes instruction choices
• can move loads and stores
• optimal allocation is difficult
⇒ NP-complete for k ≥ 1 registers

CS502 Register allocation 9

Register allocation by simplification

Assume K registers

1. Build interference graph G: for each program point

(a) compute set of temporaries simultaneously live
(b) add edge to graph for each pair in set

2. Simplify : Color graph using a simple heuristic
(a) suppose G has node m with degree < K

(b) if G′ = G−{m} can be colored then so can G, since nodes adjacent to m
have at most K−1 colors

(c) each such simplification will reduce degree of remaining nodes leading to
more opportunity for simplification

(d) leads to recursive coloring algorithm

3. Spill : suppose # ∃m of degree < K

(a) target some node (temporary) for spilling (optimistically, spilling node will
allow coloring of remaining nodes)

(b) remove and continue simplifying

CS502 Register allocation 10

Register allocation by simplification (cont.)

4. Select : assign colors to nodes

(a) start with empty graph

(b) must be a color for non-spill nodes (basis for removal)
(c) if adding spill node and no color available (neighbors already K-colored)

then mark as an actual spill
(d) repeat select

5. Start over : if select has no actual spills then finished, otherwise

(a) rewrite program to fetch actual spills before each use and store after each
definition

(b) recalculate liveness and repeat

CS502 Register allocation 11

Coalescing

• Can delete a move instruction when source s and destination d do not
interfere:

– coalesce them into a new node whose edges are the union of those of s
and d

• In principle, any pair of non-interfering nodes can be coalesced
– unfortunately, the union is more constrained and new graph may no longer
be K-colorable

– overly aggressive

CS502 Register allocation 12

Simplification with aggressive coalescing

CS502 Register allocation 13

Conservative coalescing

Apply tests for coalescing that preserve colorability.

Suppose a and b are candidates for coalescing into node ab.

Briggs: coalesce only if ab has < K neighbors of significant degree ≥ K

• simplify first removes all insignificant-degree neighbors
• ab will then be adjacent to < K neighbors

• simplify can then remove ab

George: coalesce only if all significant-degree neighbors of a already interfere with
b

• simplify removes all insignificant-degree neighbors of a
• remaining significant-degree neighbors of a already interfere with b so
coalescing does not increase the degree of any node

CS502 Register allocation 14

Iterated register coalescing

Interleave simplification with coalescing to eliminate most moves while

guaranteeing not to introduce spills:

1. Build interference graph G and distinguish move-related from
non-move-related nodes

2. Simplify : remove non-move-related nodes of low degree one at a time

3. Coalesce: conservatively coalesce move-related nodes

• remove associated move instruction
• if resulting node is non-move-related it can now be simplified
• repeat simplify and coalesce until only significant-degree or uncoalesced
moves

4. Freeze: if unable to simplify or coalesce

(a) look for move-related node of low-degree

(b) freeze its associated moves (give up on coalescing)

(c) now treat as non-move-related; resume iteration of simplify and coalesce

CS502 Register allocation 15

Iterated register coalescing (cont.)

5. Spill : if no low-degree nodes

(a) select candidate for spilling

(b) remove to stack and continue simplifying

6. Select : pop stack assigning colors (including actual spills)

7. Start over : if select has no actual spills then finished, otherwise

(a) rewrite code to fetch actual spills before each use and store after each
definition

(b) recalculate liveness and repeat

CS502 Register allocation 16

Iterated register coalescing

CS502 Register allocation 17

Spilling

• Spills require repeating build and simplify on the whole program

• To avoid increasing number of spills in future rounds of build can simply
discard coalescences

• Alternatively, preserve coalescences from before first potential spill, discard
those after that point

• Move-related spilled temporaries can be aggressively coalesced, since (unlike
registers) there is no limit on the number of stack-frame locations

CS502 Register allocation 18

Precolored nodes

Precolored nodes correspond to machine registers (e.g., stack pointer, arguments,
return address, return value)

• select and coalesce can give an ordinary temporary the same color as a
precolored register, if they don’t interfere

• e.g., argument registers can be reused inside procedures for a temporary
• simplify, freeze and spill cannot be performed on them
• also, precolored nodes interfere with other precolored nodes

So, treat precolored nodes as having infinite degree

This also avoids needing to store large adjacency lists for precolored nodes;

coalescing can use the George criterion

CS502 Register allocation 19

Temporary copies of machine registers

Since precolored nodes don’t spill, their live ranges must be kept short:

1. use move instructions

2. move callee-save registers to fresh temporaries on procedure entry, and back

on exit, spilling between as necessary

3. register pressure will spill the fresh temporaries as necessary, otherwise they
can be coalesced with their precolored counterpart and the moves deleted

CS502 Register allocation 20

Caller-save and callee-save registers

Variables whose live ranges span calls should go to callee-save registers,

otherwise to caller-save

This is easy for graph coloring allocation with spilling

• calls interfere with caller-save registers
• a cross-call variable interferes with all precolored caller-save registers, as well
as with the fresh temporaries created for callee-save copies, forcing a spill

• choose nodes with high degree but few uses, to spill the fresh callee-save
temporary instead of the cross-call variable

• this makes the original callee-save register available for coloring the cross-call
variable

CS502 Register allocation 21

Example

enter:

c := r3

a := r1

b := r2

d := 0

e := a

loop:

d := d + b

e := e - 1

if e > 0 goto loop

r1 := d

r3 := c

return [r1, r3 live out]

• Temporaries are a, b, c, d, e
• Assume target machine with K = 3 registers: r1, r2
(caller-save/argument/result), r3 (callee-save)

• The code generator has already made arrangements to save r3 explicitly by
copying into temporary a and back again

CS502 Register allocation 22

Example (cont.)

Interference graph:

cr3

ar1

r2
eb

d

CS502 Register allocation 23

Example (cont.)

• No opportunity for simplify or freeze (all non-precolored nodes have
significant degree ≥ K)

• Any coalesce will produce a new node adjacent to ≥ K significant-degree
nodes

• Must spill based on priorities:
Node uses + defs uses + defs degree priority

outside loop inside loop
a (2 +10× 0)/ 4 = 0.50
b (1 +10× 1)/ 4 = 2.75
c (2 +10× 0)/ 6 = 0.33
d (2 +10× 2)/ 4 = 5.50
e (1 +10× 3)/ 3 = 10.30

• Node c has lowest priority so spill it

CS502 Register allocation 24

Example (cont.)

Interference graph with c removed:

d

r3

ar1

r2
eb

CS502 Register allocation 25

Example (cont.)

Only possibility is to coalesce a and e: ae will have < K significant-degree

neighbors (after coalescing d will be low-degree, though high-degree before)

ae

r3

r1

r2
b

d

CS502 Register allocation 26

Example (cont.)

Can now coalesce b with r2 (or coalesce ae and r1):

r2b

r3

r1 dae

CS502 Register allocation 27

Example (cont.)

Coalescing ae and r1 (could also coalesce d with r1):

r2b

r3

dr1ae

CS502 Register allocation 28

Example (cont.)

Cannot coalesce r1ae with d because the move is constrained : the nodes
interfere. Must simplify d:

r3

r1ae

r2b

CS502 Register allocation 29

Example (cont.)

• Graph now has only precolored nodes, so pop nodes from stack coloring

along the way
– d ≡ r3
– a, b, e have colors by coalescing
– c must spill since no color can be found for it

• Introduce new temporaries c1 and c2 for each use/def, add loads before each
use and stores after each def

CS502 Register allocation 30

Example (cont.)

enter:

c1 := r3

M[c_loc] := c1

a := r1

b := r2

d := 0

e := a

loop:

d := d + b

e := e - 1

if e > 0 goto loop

r1 := d

c2 := M[c_loc]

r3 := c2

return [r1, r3 live out]

CS502 Register allocation 31

Example (cont.)

New interference graph:

c2

r3

ar1

r2
eb

d

c1

CS502 Register allocation 32

Example (cont.)

Coalesce c1 with r3, then c2 with r3:

r3c1c2

ar1

r2
eb

d

CS502 Register allocation 33

Example (cont.)

As before, coalesce a with e, then b with r2:

r2b

r1 d

r3c1c2

ae

CS502 Register allocation 34

Example (cont.)

As before, coalesce ae with r1 and simplify d:

r3c1c2

r2b

r1ae

CS502 Register allocation 35

Example (cont.)

Pop d from stack: select r3. All other nodes were coalesced or precolored. So, the

coloring is:

• a ≡ r1
• b ≡ r2
• c ≡ r3
• d ≡ r3
• e ≡ r1

CS502 Register allocation 36

Example (cont.)

Rewrite the program with this assignment:

enter:

r3 := r3

M[c_loc] := r3

r1 := r1

r2 := r2

r3 := 0

r1 := r1

loop:

r3 := r3 + r2

r1 := r1 - 1

if r1 > 0 goto loop

r1 := r3

r3 := M[c_loc]

r3 := r3

return [r1, r3 live out]

CS502 Register allocation 37

Example (cont.)

• Delete moves with source and destination the same (coalesced):

enter:

M[c_loc] := r3

r3 := 0

loop:

r2 := r3 + r2

r1 := r1 - 1

if r1 > 0 goto loop

r1 := r3

r3 := M[c_loc]

return [r1, r3 live out]

• One uncoalesced move remains

CS502 Register allocation 38

