IR trees: Expressions

CO'\\IST Integer constant i
i
NAME Symbolic constant n [a code label]
n
TEMP Temporary ¢ [one of any number of “registers”]
t
BIBQP Application of binary operator:
e e ADD, SUB, MUL, DIV [arithmetic]
AND, OR, XOR [bitwise logical]
SLL, SRL [logical shifts]
SRA [arithmetic right-shift]
to integer operands e, (evaluated first) and e, (evaluated second)
MEM Contents of a word of memory starting at address ¢
e
%L L
Procedure call; expression f is evaluated before arguments ey, ..., e,
flety... e
ESEQ . . .
A Expression sequence; evaluate s for side-effects, then e for result

se
Copyright (©)2007 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and full citation on the first page. Request permission to
publish from hosking @cs.purdue.edu.

CS502 Translation to IR trees 1

Kinds of expressions

Expression kinds indicate “how expression might be used”

Ex(exp) expressions that compute a value

Nx(stm) statements: expressions that compute no value

Cx conditionals (jump to true and false destinations)
RelCx.op(left, right) eq, ne, gt, It, ge, le

IfThenElseExp expression or statement, depending on use
Conversion operators allow use of one form in context of another:

unEx convert to tree expression that computes value of inner tree
unNx convert to tree statement that computes inner tree but returns no value

unCx(t, f) convert to statement that evaluates inner tree and branches to true
destination if non-zero, false destination otherwise

CS502 Translation to IR trees 3

IR trees: Statements

MOVE

TEMP e Evaluate e into temporary ¢
t
_MOVE
MI%M e Evaluate ¢, yielding address a, e, into word at a
€]
E)\(P Evaluate e and discard result
e
__Juwe : -
Transfer control to address ¢; [y, ... ,1, are all possible values for e
e [l] gy ln]
C%MP Evaluate ¢, then e, yielding a and b, respectively; compare a with b using rela-
erext f tional operators:
BEQ, BNE [signed and unsigned integers]
BLT, BGT, BLE, BGE [signed]
jump to ¢ if true, f if false
SEQ Statement s, followed by s,
5182
LAI?EL " .
Define constant value of name n as current code address; NAME(n) can be
n used as target of jumps, calls, etc.
CS8502 Translation to IR trees 2

Translating MinidJava

Local variables: Allocate as a temporary ¢
TEMP
M EX(TEMP r)
t
Array elements: Array expression is reference to array in heap.

For exressions e and i, translate e[i] as:
Ex(MEM(ADD(e.unEx(), x(i.unEx(), CONST(w)))))
where w is the target machine’s word size: all values are word-sized (scalar)
in Minidava
Array bounds check: array index i <e.size; runtime will put size in word
preceding array base
Object fields: Object expression is reference to object in heap.
For expression ¢ and field f, translate e.f as:
Ex(MEM(ADD(e.unEx(), CONST(0))))
where o is the byte offset of the field £ in the object
Null pointer check: object expression must be non-null (i.e., non-zero)

CS8502 Translation to IR trees 4



Translating MinidJava

String literals: Allocate statically:

.word 11
label: .ascii "hello world"

Translate as reference to label:
Ex(NAME(1abel))
Object creation: Allocate object in heap.
For class T, translate new T'() as:

Ex(CALL(NAME("new”), CONST(fields ), NAME(label for T’s vtable)))

Array creation: Allocate array in heap.

For type T, array expression ¢, translate newT [e] as:

Ex(ESEQ(MOVE(TEMP(s), e.unEx()),

CALL(NAME("new”), MUL(TEMP(s), CONST(w)), TEMP(s))))

where s is a fresh temporary, and w is the target machine’s word size.

CS502 Translation to IR trees

while loops

while (c) s:

. evaluate ¢

. if false jump to next statement after loop
. evaluate loop body s

. evaluate ¢

a A~ W N =

. if true jump back to loop body

eg.,
if not(c) jump done
body:
N
if ¢ jump body
done:
Nx(SEQ(SEQ(c.unCx(b, x), SEQ(LABEL(b), s.unNx())),
SEQ(c.unCx(b, x), LABEL(x))))

CS502 Translation to IR trees

Control structures

Basic blocks:

e a sequence of straight-line code

o if one instruction executes then they all execute

e a maximal sequence of instructions without branches

e a label starts a new basic block
Overview of control structure translation:

o control flow links up the basic blocks
e ideas are simple
e implementation requires bookkeeping

e some care is needed for good code

CS8502 Translation to IR trees

for loops

for (i,c,u)s
. evaluate initialization statement i

. evaluate ¢
. if false jump to next statement after loop

. evaluate update statement u

1
2

3

4. evaluate loop body s
5

6. evaluate ¢

7

. if true jump to loop body
Nx(SEQ(i.unNx(),

SEQ(SEQ(c.unCx(b, x), SEQ(LABEL(b), SEQ(s.unNx(), u.unNx()))),

SEQ(c.unCx(b, x), LABEL(x)))))

For break statements:

e when translating a loop push the done label on some stack

e break simply jumps to label on top of stack

e when done translating loop and its body, pop the label

CS8502 Translation to IR trees



Method calls Comparisons

eg.m(eq,...,en): Translate a op b as:

Ex(CALL(MEM(MEM(eg.unEX(), —w), m.index x w), e;.unEx(), RelCx.op(a.unEx(), b.unEx())
... en.unEx()))
When used as a conditional unCx(z, f) yields:

Null pointer check: expression ¢, must be non-null (i.e., non-zero) CJUMP( EX0, b.unEX(), 1, /)
a.unEx(), b.unEx(), ¢,

where r and f are labels.
When used as a value unEx() yields:

ESEQ(SEQ(MOVE(TEMP(r), CONST(1)),
SEQ(unCx(t, f),
SEQ(LABEL(Y),
SEQ(MOVE(TEMP(r), CONST(0)), LABEL(r))))),

TEMP(r))
CS502 Translation to IR trees 9 CS502 Translation to IR trees
Conditionals Conditionals: Example
Translate short-circuiting Boolean operators (&&, ||, !) as if they were conditionals Applying unCx(r, f) to (x <5) ? (a>b) : 0:

eg.,x<5&a>bistreatedas (x<5)? (a>b):0
SEQ(BLT(x.unEx(), CONST(5), #, ff),

We translate e¢; 7 e; : e3 into IfThenElseExp(e;, e, €3) SEQ(SEQ(LABEL(sz, BGT(a.unEx(), b.unkx(), ¢, f)),

When used as a value IfThenElseExp.unEx() yields: SEQ(LABEL(ff, JUMP(f))))
ESEQ(SEQ(SEQ(e;.unCx(t, f),
SEQ(SEQ(LABEL(r), or more optimally:
SEQ(MOVE(TEMP(r), ep.unEx()),
JUMP()))), SEQ(BLT(x.unEx(), CONST(5), 1, f),
SEQ(LABEL(/), SEQ(LABEL (11, BGT(a.unEx(), b.uneX(), 1, f)))
SEQ(MOVE(TEMP(r), e3.unEx()),
JUMP())))),
LABEL(})),
TEMP(r))

As a conditional IfThenElseExp.unCx(t, f) yields:

SEQ(e;.unCx(s, ff), SEQ(SEQ(LABEL(#t), ep.unCx(z, 1)),
SEQ(LABEL(ff), e3.unCx(z, 1))))

CS502 Translation to IR trees 11 CS502 Translation to IR trees



One-dimensional fixed arrays: Pascal/Modula/C/C++

var a: array [2..5] of integer;

ale]
translates to:

MEM(ADD(TEMP(FP), ADD(CONST & — 2w, x(CONST w, e.unEx))))

where k is offset of static array from the frame pointer FP, w is word size

In Pascal, multidimensional arrays are treated as arrays of arrays, so A[i, j] is
equivalent to A[i][j], so this translation works for subarrays. Not so in Fortran.

CS502 Translation to IR trees 13

Multidimensional arrays

Array layout:

Contiguous:
1. Row major
Rightmost subscript varies most quickly:
Al1,1], A[1,2],
A[2,1], A[2,2],
Used in PL/1, Algol, Pascal, C, Ada, Modula, Modula-2, Modula-3
2. Column major
Leftmost subscript varies most quickly:
Al1,1], A[2,1],
Al1,2], A[2,2],
Used in FORTRAN
By vectors
Contiguous vector of pointers to (non-contiguous) subarrays

CS502 Translation to IR trees 15

Multidimensional arrays

Array allocation:

constant bounds
e allocate in static area, stack, or heap
e no run-time descriptor is needed
dynamic arrays: bounds fixed at run-time

e allocate in stack or heap
e descriptor is needed

dynamic arrays: bounds can change at run-time
e allocate in heap
e descriptor is needed

CS8502 Translation to IR trees 14

Multi-dimensional arrays: row-major layout

array [1..N,1..M] of T
= array [1..N] of array [1..M] of T
no. of elt’s in dimension j: D;=U;—L;+1
position of ALiy, ..., ipl:
(in—Ln)
+(inf] 7Lnfl)Dn
Jr(’.an 7Ln72)DnDn71
+(i1—=L1)Dn--- Do
which can be rewritten as
variable part

11Dy---Dp+ipD3---Dp+---+i,_1Dp+iy
_(LID2"'Dn +L2D3"‘Dn+"'+Ln—]Dn+Ln)

constant part

Address of Alij, ..., inl:
address(A) + ((variable part — constant part) x element size)

CS8502 Translation to IR trees 16



case (switch) statements

case (switch) statements

case Eof Vi: S;...V,: S, end

. evaluate the expression
. find value in case list equal to value of expression
. execute statement associated with value found

w nNn =

4. jump to next statement after case
Key issue: finding the right case

e sequence of conditional jumps (small case set)
O(| cases|)

e binary search of an ordered jump table (sparse case set)
O(log, | cases |)

e hash table (dense case set)
o(1)

CS502 Translation to IR trees

Labels and gotos

case Eof Vi: S;...V,: S, end

One translation approach:
t = expr
jump test
Ly: code for S
jump next
Ly: code for S,
jump next

Ly: code for S,
jump next

test: ifr=V;jump L,
if t =V, jump L,

if t =V, jump L,
code to raise run-time exception
next:

17 CS502 Translation to IR trees 18

After translation

A little complicated!

Resolving references to labels multiply-defined in different scopes:

begin
L: begin
goto L;
...{ possible definition of L }
end
end
e Scope labels like variables
e On use, label definition is either resolved or unresolved
e On definition, backpatch previous unresolved label uses

Jumping out of blocks or procedures:

1. Pop run-time stack
2. Fix display (if used); static chain needs no fixing
3. Restore registers if jumping out of a procedure

CS502 Translation to IR trees

To simplify translation there are mismatches between tree code and actual
machine instructions:

1. CJUMP to two labels; machine conditionals fall through on false

2. ESEQ and CALL order evaluation of subtrees for side-effects — constrains
optimization

3. CALL as argument to another CALL causes interference between register
arguments

19 CS502 Translation to IR trees 20



Canonical trees

Basic blocks and traces

Rewrite into an equivalent canonical form:

e SEQ can only be subtree of another SEQ

e SEQs clustered at top of tree

e might as well turn into simple linear list of statements

CS502 Translation to IR trees

Linear trees

3-stage transformation:

1. to linear list of canonical trees without SEQ/ESEQ

2. to basic blocks with no internal jumps or labels

3. to traces with every CJUMP immediately followed by false target

21 CS502 Translation to IR trees 22

Linearizing trees

1. No SEQ or ESEQ nodes

2. A CALL can only be a subtree of an EXP(...) or a MOVE(TEMP t,..

Transformations:

o lift ESEQs up tree until they can become SEQs

e turn SEQs into linear list

CS502 Translation to IR trees

2

ESEQ(s;, ESEQ(sy, ¢))
BINOP(op, ESEQ(s, ¢1), ¢2)

= ESEQ(SEQ(s1,s2), €)
— ESEQ(s, BINOP(0p, ¢1, ¢3))

MEM(ESEQ(s, e1)) — ESEQ(s, MEM(e1))

JUMP(ESEQ(s, e1)) = SEQ(s, JUMP(ey))

CJUMP(0p,
ESEQ(s, 1), e2, 11, Ip)
BINOP(0p, ¢;, ESEQ(s, 7))

= SEQ(s, CJUMP(op, ey, 2, I1, 1))

— ESEQ(MOVE(TEMP 1, ¢;),
ESEQ(s,
BINOP(op, TEMP , ¢,)))
= SEQ(MOVE(TEMP t, ¢),
SEQ(s,
CJUMP(op, TEMP t, e3, 11, 15)))
= SEQ(s, MOVE(ey, ¢2))

CJUMP(op,
e1, ESEQ(s, e2), 11, 1)

MOVE(ESEQ(s, el), ¢)

CALL(f, a) = ESEQ(MOVE(TEMP t, CALL(f, a)),
TEMP(t))
23 CS8502 Translation to IR trees 24



Taming conditional branches

1. Form basic blocks: sequence of statements always entered at the beginning

and exited at the end:
o first statement is a LABEL
e last statement is a JUMP or CJUMP
e contains no other LABELs, JUMPS or CJUMPs
2. Order blocks into trace:
e every CJUMP followed by false target

o JUMPs followed by target, if possible, to eliminate JUMP

CS502 Translation to IR trees

Traces

25

1. Pick an untraced block, the start of some trace

2. Follow a possible execution path, choosing false targets first
3. Repeat until all blocks are traced

Cleaning up:

o CJUMP followed by true target: switch targets, negate condition

e CJUMP(o, q, b, Iy, If) followed by neither I; nor Ly

1. create new l}

2. rewrite as CJUMP(o, a, b, I, lj’,), LABEL l’f, JUMP ¢
e JUMP [, LABEL / — LABEL /

CS502 Translation to IR trees

27

Basic blocks

Control flow analysis discovers basic blocks and control flow between them:
1. scan from beginning to end:

e LABEL !/ starts a new block and previous block ends (append JUMP [ if
necessary)

e JUMP or CJUMP ends a block and starts next block (prepend new LABEL
if necessary)

2. prepend new LABELSs to blocks with non-LABEL at beginning
3. append JUMP(NAME done) to last block

CS8502 Translation to IR trees 26



