
Semantic Processing

The compilation process is driven by the syntactic structure of the program as

discovered by the parser

Semantic routines:

• interpret meaning of the program based on its syntactic structure

• two purposes:

– finish analysis by deriving context-sensitive information

– begin synthesis by generating the IR or target code

• associated with individual productions of a context free grammar or subtrees

of a syntax tree

Copyright c©2007 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request
permission to publish from hosking@cs.purdue.edu.

CS502 Semantics 1

Context-sensitive analysis

What context-sensitive questions might the compiler ask?

1. Is x scalar, an array, or a function?

2. Is x declared before it is used?

3. Are any names declared but not used?

4. Which declaration of x does this reference?

5. Is an expression type-consistent?

6. Does the dimension of a reference match the declaration?

7. Where can x be stored? (heap, stack, . . .)

8. Does *p reference the result of a malloc()?

9. Is x defined before it is used?

10. Is an array reference in bounds?

11. Does function foo produce a constant value?

12. Can p be implemented as a memo-function?

These cannot be answered with a context-free grammar

CS502 Semantics 2

Context-sensitive analysis

Why is context-sensitive analysis hard?

• answers depend on values, not syntax

• questions and answers involve non-local information

• answers may involve computation

Several alternatives:

abstract syntax tree specify non-local computations

(attribute grammars) automatic evaluators

symbol tables central store for facts

express checking code

language design simplify language

avoid problems

CS502 Semantics 3

Alternatives for semantic processing

code
object

code
source

IRIR

tokens

syntactic structure

Scanner

Routines
Semantic

Parser

Optimizer Code
Generator

Table

Symbol

• one-pass analysis and synthesis

• one-pass compiler plus peephole

• one-pass analysis & IR synthesis + code generation pass

• multipass analysis (MiniJava)

• multipass synthesis (MiniJava)

• language-independent and retargetable compilers (MiniJava)

CS502 Semantics 4



One-pass compilers

• interleave scanning, parsing, checking, and translation

• no explicit IR

• generates target machine code directly

emit short sequences of instructions at a time on each parser action (symbol

match for predictive parsing/LR reduction)

⇒ little or no optimization possible (minimal context)

Can add a peephole optimization pass

• extra pass over generated code through window (peephole) of a few

instructions

• smoothes “rough edges” between segments of code emitted by one call to the

code generator

CS502 Semantics 5

One-pass analysis/synthesis + code generation

Generate explicit IR as interface to code generator

• linear – e.g., tuples

• code generator alternatives:

– one tuple at a time

– many tuples at a time for more context and better code

Advantages

• back-end independent from front-end

⇒ easier retargetting

IR must be expressive enough for different machines

• add optimization pass later (multipass synthesis)

CS502 Semantics 6

Multipass analysis

Historical motivation: constrained address spaces

Several passes, read/write intermediate code files

1. scan source file, generate tokens (place identifiers and constants directly into

symbol table)

2. parse token file

generate semantic actions or linearized parse tree

3. parser output drives:

• declaration processing to symbol table file

• semantic checking with synthesis of code/linear IR

CS502 Semantics 7

Multipass analysis

Other reasons for multipass analysis (omitting file I/O)

• language may require it – e.g., declarations after use:

1. scan, parse and build symbol table

2. semantic checks and code/IR synthesis

• take advantage of tree-structured IR for less restrictive analysis: scanning,

parsing, tree generation combined, one or more subsequent passes over the

tree perform semantic analysis and synthesis

CS502 Semantics 8



Multipass synthesis

Passes operate on linear or tree-structured IR

Options

• code generation and peephole optimization

• multipass transformation of IR: machine-independent and

machine-dependent optimizations

• high-level machine-independent IR to lower-level IR prior to code generation

• language-independent front ends

(first translate to high-level IR)

• retargettable back ends (first transform into low-level IR)

CS502 Semantics 9

Multipass synthesis: e.g., GNU C compiler (gcc)

• language-dependent parser builds language-independent trees

• trees drive generation of machine-independent low-level Register Transfer

Language for machine-independent optimization

• thence to target machine code and peephole optimization

CS502 Semantics 10

Intermediate representations

Why use an intermediate representation?

1. break the compiler into manageable pieces

good software engineering technique

2. allow a complete pass before code is emitted

lets compiler consider more than one option

3. simplifies retargeting to new host

isolates back end from front end

4. simplifies handling of “poly-language/architecture” problem

m lang’s, n targets⇒ m+n components (myth)

5. enables machine-independent optimization

general techniques, multiple passes

An intermediate representation is a compile-time data structure

CS502 Semantics 11

Intermediate representations

front back
end end

source
code code

machineoptimizer
IR IR

Generally speaking:

• front end produces IR

• optimizer transforms that representation into an equivalent program that may

run more efficiently

• back end transforms IR into native code for the target machine

CS502 Semantics 12



Intermediate representations

Representations talked about in the literature include:

• abstract syntax trees (AST)

• linear (operator) form of tree

• directed acyclic graphs (DAG)

• control flow graphs (CFG)

• program dependence graphs (PDG)

• static single assignment form (SSA)

• 3-address code

• hybrid combinations

CS502 Semantics 13

Intermediate representations

Important IR Properties

• ease of generation

• ease of manipulation

• cost of manipulation

• level of abstraction

• freedom of expression

• size of typical procedure

• original or derivative

Subtle design decisions in the IR have far reaching effects on the speed and

effectiveness of the compiler.

Level of exposed detail is a crucial consideration.

CS502 Semantics 14

Intermediate representations

Broadly speaking, IRs fall into three categories:

Structural

• structural IRs are graphically oriented

• examples include trees, DAGs

• heavily used in source to source translators

• nodes, edges tend to be large

Linear

• pseudo-code for some abstract machine

• large variation in level of abstraction

• simple, compact data structures

• easier to rearrange

Hybrids

• combination of graphs and linear code

• attempt to take best of each

• e.g., control-flow graphs

CS502 Semantics 15

Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the nodes for

most non-terminal symbols removed.

id:

num: id:

This represents “x − 2 ∗ y”.

For ease of manipulation, can use a linearized (operator) form of the tree.

e.g., in postfix form: x 2 y ∗ −

CS502 Semantics 16



Directed acyclic graph

A directed acyclic graph (DAG) is an AST with a unique node for each value.

x := 2 * y + sin(2*x)
z := x / 2 id:

sin

id:

num:

id:

id:

CS502 Semantics 17

Control flow graph

The control flow graph (CFG) models the transfers of control in the program

• nodes are basic blocks

straight-line blocks of code

• edges in the graph represent control flow

loops, if-then-else, case, goto

if x = y then

S1

else

S2

end

S3

x=y?

s2s1

s3

falsetrue

CS502 Semantics 18

3-address code

3-address code can mean a variety of representations.

In general, it allow statements of the form:

x = y op z

with a single operator and, at most, three names.

Simpler form of expression:

x - 2 * y

becomes

t1 = 2 * y

t2 = x - t1

Advantages

• compact form (direct naming)

• names for intermediate values

Can include forms of prefix or postfix code

CS502 Semantics 19

3-address code

Typical statement types include:

1. assignments
x = y op z

2. assignments
x = op y

3. assignments

x = y[i]

4. assignments
x = y

5. branches
goto L

6. conditional branches
if x relop y goto L

7. procedure calls
param x
param y
call p

8. address and pointer assignments

x = &y
*y = z

CS502 Semantics 20



3-address code

Quadruples
x - 2 * y

(1) load t1 y

(2) loadi t2 2

(3) mult t3 t2 t1

(4) load t4 x

(5) sub t5 t4 t3

• simple record structure with four fields

• easy to reorder

• explicit names

CS502 Semantics 21

3-address code

Triples
x - 2 * y

(1) load y

(2) loadi 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

• use table index as implicit name

• require only three fields in record

• harder to reorder

CS502 Semantics 22

3-address code

Indirect Triples
x - 2 * y

stmt op arg1 arg2

(1) (100) (100) load y

(2) (101) (101) loadi 2

(3) (102) (102) mult (100) (101)

(4) (103) (103) load x

(5) (104) (104) sub (103) (102)

• list of 1st triple in statement

• simplifies moving statements

• more space than triples

• implicit name space management

CS502 Semantics 23

Other hybrids

An attempt to get the best of both worlds.

• graphs where they work

• linear codes where it pays off

Unfortunately, there appears to be little agreement about where to use each kind

of IR to best advantage.

For example:

• PCC and FORTRAN 77 directly emit assembly code for control flow, but build

and pass around expression trees for expressions.

• Many people have tried using a control flow graph with low-level, three

address code for each basic block.

CS502 Semantics 24



Intermediate representations

But, this isn’t the whole story

Symbol table:

• identifiers, procedures

• size, type, location

• lexical nesting depth

Constant table:

• representation, type

• storage class, offset(s)

Storage map:

• storage layout

• overlap information

• (virtual) register assignments

CS502 Semantics 25

Advice

• Many kinds of IR are used in practice.

• There is no widespread agreement on this subject.

• A compiler may need several different IRs

• Choose IR with right level of detail

• Keep manipulation costs in mind

For MiniJava:

1. abstract syntax trees separate syntax analysis from semantic analysis

2. intermediate code trees separate semantic analysis from code generation

CS502 Semantics 26

Semantic actions

Parser must do more than accept/reject input; must also initiate translation.

Semantic actions are routines executed by parser for each syntactic symbol

recognized.

Each symbol has associated semantic value (e.g., parse tree node).

Recursive descent parser:

• one routine for each non-terminal

• routine returns semantic value for the non-terminal

• store semantic values for RHS symbols in local variables

What about a table-driven LL(1) parser?

• maintain explicit semantic stack distinct from parse stack

• actions push results and pop arguments

CS502 Semantics 27

LL parsers and actions

How does an LL parser handle actions?

Expand productions before scanning RHS symbols, so:

• push actions onto parse stack like other grammar symbols

• pop and perform action when it comes to top of parse stack

CS502 Semantics 28



LL parsers and actions

push EOF

push Start Symbol

token← next token()

repeat

pop X

if X is a terminal or EOF then

if X = token then

token← next token()

else error()

else if X is an action

perform X

else /* X is a non-terminal */

if M[X,token] = X → Y1Y2 · · ·Yk then

push Yk,Yk−1, · · · ,Y1
else error()

until X = EOF

CS502 Semantics 29

LR parsers and action symbols

What about LR parsers?

Scan entire RHS before applying production, so:

• cannot perform actions until entire RHS scanned

• can only place actions at very end of RHS of production

• introduce new marker non-terminals and corresponding productions to get

around this restriction†

A→ w action !

becomes

A→M!

M→ w action

†yacc, bison, CUP do this automatically

CS502 Semantics 30

Action-controlled semantic stacks

Approach:

• stack is managed explicitly by action routines

• actions take arguments from top of stack

• actions place results back on stack

Advantages:

• actions can directly access entries in stack without popping (efficient)

Disadvantages:

• implementation is exposed

• action routines must include explicit code to manage stack

Alternative: abstract semantic stacks

• hide stack implementation behind push, pop interface

• accessing stack entries now requires pop

(and copy to local var.)

• still need to manage stack within actions⇒ errors

CS502 Semantics 31

LR parser-controlled semantic stacks

Idea: let parser manage the semantic stack

LR parser-controlled semantic stacks:

• parse stack contains already parsed symbols

• maintain semantic values in parallel with their symbols

• add space in parse stack or parallel stack for semantic values

• every matched grammar symbol has semantic value

• pop semantic values along with symbols

⇒ LR parsers have a very nice fit with semantic processing

CS502 Semantics 32



LL parser-controlled semantic stacks

Problems:

• parse stack contains predicted symbols, not yet matched

• often need semantic value after its corresponding symbol is popped

Solution:

• use separate semantic stack

• push entries on semantic stack along with their symbols

• on completion of production, pop its RHS’s semantic values

CS502 Semantics 33

Attribute grammars

Idea: attribute the syntax tree

• can add attributes (fields) to each node

• specify equations to define values (unique)

• can use attributes from parent and children

Example: to ensure that constants are immutable:

• add type and class attributes to expression nodes

• rules for production on := that

1. check that LHS.class is variable

2. check that LHS.type and RHS.type are consistent or conform

CS502 Semantics 34

Attribute grammars

To formalize such systems Knuth introduced attribute grammars:

• grammar-based specification of tree attributes

• value assignments associated with productions

• each attribute uniquely, locally defined

• label identical terms uniquely

Can specify context-sensitive actions with attribute grammars

CS502 Semantics 35

Example

PRODUCTION SEMANTIC RULES

D → T L L.in := T.type

T → int T.type := integer

T → real T.type := real

L → L1 , id L1.in := L.in

addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

CS502 Semantics 36



Example: Evaluate signed binary numbers

PRODUCTION SEMANTIC RULES

NUM → SIGN LIST LIST.pos := 0

if SIGN.neg

NUM.val := -LIST.val

else

NUM.val := LIST.val

SIGN→ + SIGN.neg := false

SIGN→ - SIGN.neg := true

LIST → BIT BIT.pos := LIST.pos

LIST.val := BIT.val

LIST → LIST1 BIT LIST1.pos := LIST.pos + 1

BIT.pos := LIST.pos

LIST.val := LIST1.val + BIT.val

BIT → 0 BIT.val := 0

BIT → 1 BIT.val := 2BIT.pos

CS502 Semantics 37

Example (continued)

The attributed parse tree for -101:

• val and neg are synthetic attributes

• pos is an inherited attribute

CS502 Semantics 38

Dependences between attributes

• values are computed from constants & other attributes

• synthetic attribute – value computed from children

• inherited attribute – value computed from siblings & parent

• key notion: induced dependency graph

CS502 Semantics 39

The attribute dependency graph

• nodes represent attributes

• edges represent flow of values

• graph is specific to parse tree

• size is related to parse tree’s size

• can be built alongside parse tree

The dependency graph must be acyclic

Evaluation order:

• topological sort the dependency graph to order attributes

• using this order, evaluate the rules

The order depends on both the grammar and the input string

CS502 Semantics 40



Example (continued)

The attribute dependency graph:

0

1

2

0

1

2

CS502 Semantics 41

Example: A topological order

1. SIGN.neg

2. LIST0.pos

3. LIST1.pos

4. LIST2.pos

5. BIT0.pos

6. BIT1.pos

7. BIT2.pos

8. BIT0.val

9. LIST2.val

10. BIT1.val

11. LIST1.val

12. BIT2.val

13. LIST0.val

14. NUM.val

Evaluating in this order yields NUM.val: -5

CS502 Semantics 42

Evaluation strategies

Parse-tree methods (dynamic)

1. build the parse tree

2. build the dependency graph

3. topological sort the graph

4. evaluate it (cyclic graph fails)

Rule-based methods (treewalk )

1. analyse semantic rules at compiler-construction time

2. determine a static ordering for each production’s attributes

3. evaluate its attributes in that order at compile time

Oblivious methods (passes)

1. ignore the parse tree and grammar

2. choose a convenient order (e.g., left-right traversal) and use it

3. repeat traversal until no more attribute values can be generated

CS502 Semantics 43

Top-down (LL) on-the-fly one-pass evaluation

L-attributed grammar: given production A→ X1X2 · · ·Xn

• inherited attributes of Xj depend only on:

1. inherited attributes of A

2. arbitrary attributes of X1,X2, · · ·Xj−1

• synthetic attributes of A depend only on its inherited attributes and arbitrary

RHS attributes

• synthetic attributes of an action depends only on its inherited attributes

i.e., evaluation order:

Inh(A), Inh(X1), Syn(X1), . . . , Inh(Xn), Syn(Xn), Syn(A)

This is precisely the order of evaluation for an LL parser

CS502 Semantics 44



Bottom-up (LR) on-the-fly one-pass evaluation

S-attributed grammar:

• L-attributed

• only synthetic attributes for non-terminals

• actions at far right of a RHS

Can evaluate S-attributed in one bottom-up (LR) pass

Inherited attributes: derive values from constants, parents, siblings

• used to express context (context-sensitive checking)

• inherited attributes are more “natural”

We want to use both kinds of attribute

• can always rewrite L-attributed LL grammars (using markers and copying) to

avoid inherited attribute problems with LR

CS502 Semantics 45

Bottom-up evaluation of inherited attributes

PRODUCTION SEMANTIC RULES

D → T L L.in := T.type

T → int T.type := integer

T → real T.type := real

L → L1 , id L1.in := L.in

addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

For copy rules generating inherited attributes value may be found at a fixed offset

below top of stack

CS502 Semantics 46

Simulating bottom-up evaluation

Consider:

PRODUCTION SEMANTIC RULES

S → aAC C.i := A.s

S → bABC C.i := A.s

C → c C.s := g(C.i)

C inherits synthetic attribute A.s by copy rule

There may or may not be a B between A and C in parse stack

Rewrite as:

PRODUCTION SEMANTIC RULES

S → aAC C.i := A.s

S → bABMC M.i := A.s;C.i :=M.s

C → c C.s := g(C.i)
M → " M.s :=M.i

CS502 Semantics 47

Simulating bottom-up evaluation

Consider:

PRODUCTION SEMANTIC RULES

S → aAC C.i := f (A.s)

C inherits f (A.s), but not by copying

Value of f (A.s) is not in the stack

Rewrite as:

PRODUCTION SEMANTIC RULES

S → aAMC M.i := A.s;C.i :=M.s

M → " M.s := f (M.i)

CS502 Semantics 48



Bottom-up (LR) on-the-fly one-pass evaluation

In general, an attribute grammar can be evaluated with one-pass LR if it is

LC-attributed:

• L-attributed

• non-terminals in left corners have only synthetic attributes

• no actions in left corners

Left corners are that part of RHS sufficient to recognize the production, e.g.,

A→ #!

LL(1) ⇒ left corner # is empty

LR(1)⇒ left corner may be entire RHS

(right corner ! may be empty)

CS502 Semantics 49

Attribute Grammars

Advantages

• clean formalism
• automatic generation of evaluator

• high-level specification

Disadvantages

• evaluation strategy determines efficiency

• increased space requirements

• parse tree evaluators need dependency graph

• results distributed over tree
• circularity testing

Intel’s 80286 Pascal compiler used an attribute grammar evaluator to perform

context-sensitive analysis.

Historically, attribute grammar evaluators have been deemed too large and

expensive for commercial-quality compilers.

CS502 Semantics 50

Other uses

• the Cornell Program Synthesizer

• generate Ph.D. theses and papers

• odd forms of compiling — VHDL compiler

• structure editors for code, theorems, . . .

Attribute grammars are a powerful formalism

• relatively abstract

• automatic evaluation

CS502 Semantics 51

Symbol tables

For compile-time efficiency, compilers use a symbol table:

associates lexical names (symbols) with their attributes

What items should be entered?

• variable names

• defined constants

• procedure and function names

• literal constants and strings

• source text labels

• compiler-generated temporaries (we’ll get there)

Separate table for structure layouts (types)

(field offsets and lengths)

A symbol table is a compile-time structure

CS502 Semantics 52



Symbol table information

What kind of information might the compiler need?

• textual name

• data type

• dimension information (for aggregates)

• declaring procedure

• lexical level of declaration

• storage class (base address)

• offset in storage

• if record, pointer to structure table

• if parameter, by-reference or by-value?

• can it be aliased? to what other names?

• number and type of arguments to functions

CS502 Semantics 53

Symbol table organization

How should the table be organized?

Linear List

• O(n) probes per lookup
• easy to expand — no fixed size
• one allocation per insertion

Ordered Linear List

• O(log2n) probes per lookup using binary search
• insertion is expensive (to reorganize list)

Binary Tree

• O(n) probes per lookup — unbalanced

• O(log2n) probes per lookup — balanced

• easy to expand — no fixed size
• one allocation per insertion

Hash Table

• O(1) probes per lookup — on average

• expansion costs vary with specific scheme

CS502 Semantics 54

Nested scopes: block-structured symbol tables

What information is needed?

• when asking about a name, want most recent declaration

• declaration may be from current scope or outer scope

• innermost scope overrides outer scope declarations

Key point: new declarations (usually) occur only in current scope

What operations do we need?

• void put (Symbol key, Object value) – bind key to value

• Object get(Symbol key) – return value bound to key

• void beginScope() – remember current state of table

• void endScope() – close current scope and restore table to state at most

recent open beginScope

May need to preserve list of locals for the debugger

CS502 Semantics 55

Attribute information

Attributes are internal representation of declarations

Symbol table associates names with attributes

Names may have different attributes depending on their meaning:

• variables: type, procedure level, frame offset

• types: type descriptor, data size/alignment

• constants: type, value

• procedures: formals (names/types), result type, block information (local

decls.), frame size

CS502 Semantics 56



Type expressions

Type expressions are a textual representation for types:

1. basic types: boolean, char, integer, real, etc.

2. type names

3. constructed types (constructors applied to type expressions):

(a) array(I,T ) denotes an array of T indexed over I

e.g., array(1 . . .10, integer)

(b) products: T1×T2 denotes Cartesian product of type expressions T1 and T2

(c) records: fields have names

e.g., record((a× integer),(b× real))

(d) pointers: pointer(T ) denotes the type “pointer to an object of type T ”

(e) functions: D→ R denotes the type of a function mapping domain type D to

range type R

e.g., integer× integer→ integer

CS502 Semantics 57

Type descriptors

Type descriptors are compile-time structures representing type expressions

e.g., char× char→ pointer(integer)

char char

pointer

integer

or

char

pointer

integer

CS502 Semantics 58

Type compatibility

Type checking needs to determine type equivalence

Two approaches:

Name equivalence: each type name is a distinct type

Structural equivalence: two types are equivalent iff. they have the same structure

(after substituting type expressions for type names)

• s≡ t iff. s and t are the same basic types

• array(s1,s2) ≡ array(t1, t2) iff. s1 ≡ t1 and s2 ≡ t2
• s1× s2 ≡ t1× t2 iff. s1 ≡ t1 and s2 ≡ t2
• pointer(s) ≡ pointer(t) iff. s≡ t

• s1→ s2 ≡ t1→ t2 iff. s1 ≡ t1 and s2 ≡ t2

CS502 Semantics 59

Type compatibility: example

Consider:
type link = ↑cell;
var next : link;

last : link;
p : ↑cell;
q, r : ↑cell;

Under name equivalence:

• next and last have the same type

• p, q and r have the same type

• p and next have different type

Under structural equivalence all variables have the same type

Ada/Pascal/Modula-2 are somewhat confusing: they treat distinct type definitions

as distinct types, so p has different type from q and r

CS502 Semantics 60



Type compatibility: Pascal name equivalence

Build compile-time structure called a type graph:

• each constructor or basic type creates a node

• each name creates a leaf (associated with the type’s descriptor)

pointer pointer pointer

Type expressions are equivalent if they are represented by the same node in the

graph

CS502 Semantics 61

Type compatibility: recursive types

Consider:

type link = ^cell;

cell = record

info: integer;

next: link;

end;

We may want to eliminate the names from the type graph

Eliminating name link from type graph for record:

record

integer pointer

CS502 Semantics 62

Type compatibility: recursive types

Allowing cycles in the type graph eliminates cell:

record

integer pointer

CS502 Semantics 63


