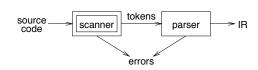
Scanner



• maps characters into tokens - the basic unit of syntax

x = x + y;

becomes

<id, x> = <id, x> + <id, y> ;

- character string value for a token is a lexeme
- typical tokens: number, id, +, -, *, /, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed
 - \Rightarrow use specialized recognizer (as opposed to lex)

Copyright ©2007 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

CS502	Scanning
-------	----------

Specifying patterns

A scanner must recognize the units of syntax Some parts are easy:

white space

<ws> ::= <ws> ; ; | <ws> ;\t; | ; ; | ;\t;

keywords and operators

specified as literal patterns: do, end

comments

opening and closing delimiters: /* ··· */

CS502

Scanning

Specifying patterns

A scanner must recognize the units of syntax Other parts are much harder:

identifiers

alphabetic followed by k alphanumerics (_, \$, &, ...)

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9 decimals: integer '.' digits from 0-9 reals: (integer or decimal) 'E' (+ or -) digits from 0-9 complex: '(' real ', ' real ')'

Operations on languages

Operation	Definition
union of L and M	$L \cup M = \{s \mid s \in L \text{ or } s \in M\}$
written $L \cup M$	
concatenation of L and M	$LM = \{st \mid s \in L \text{ and } t \in M\}$
written LM	
Kleene closure of L written L^*	$L^* = \bigcup_{i=0}^{\infty} L^i$
positive closure of L written L^+	$L^+ = \bigcup_{i=1}^{\infty} L^i$

3

1

2

Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include both *regular expressions* and *regular grammars*

Regular expressions (*over an alphabet* Σ):

- 1. ϵ is a RE denoting the set $\{\epsilon\}$
- 2. if $a \in \Sigma$, then *a* is a RE denoting $\{a\}$
- 3. if *r* and *s* are REs, denoting L(r) and L(s), then:

(r) is a RE denoting L(r)

$$(r) \mid (s)$$
 is a RE denoting $L(r) \bigcup L(s)$

$$(r)(s)$$
 is a RE denoting $L(r)L(s)$

 $(r)^*$ is a RE denoting $L(r)^*$

If we adopt a *precedence* for operators, the extra parentheses can go away. We assume *closure*, then *concatenation*, then *alternation* as the order of precedence.

CS502	Scanning	5
-------	----------	---

Algebraic properties of REs

Axiom	Description	
r s=s r	is commutative	
r (s t) = (r s) t	is associative	
(rs)t = r(st)	concatenation is associative	
r(s t) = rs rt	concatenation distributes over	
(s t)r = sr tr		
$\epsilon r = r$	ϵ is the identity for concatenation	
$r\varepsilon = r$		
$r^* = (r \varepsilon)^*$	relation between * and $\boldsymbol{\epsilon}$	
$r^{**} = r^*$	* is idempotent	

Examples

identifier

 $\begin{array}{l} \textit{letter} \rightarrow (a \mid b \mid c \mid ... \mid z \mid A \mid B \mid C \mid ... \mid Z) \\ \textit{digit} \rightarrow (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9) \\ \textit{id} \rightarrow \textit{letter} (\textit{letter} \mid \textit{digit})^* \\ \textit{numbers} \\ \textit{integer} \rightarrow (+ \mid - \mid \epsilon) (0 \mid (1 \mid 2 \mid 3 \mid ... \mid 9) \textit{digit}^*) \\ \textit{decimal} \rightarrow \textit{integer} . (\textit{digit})^* \\ \textit{real} \rightarrow (\textit{integer} \mid \textit{decimal}) \in (+ \mid -) \textit{digit}^* \\ \textit{complex} \rightarrow `(` \textit{real} , \textit{real} `)` \\ \end{array}$

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically CS502 Scanning

Examples

Let $\Sigma = \{a, b\}$

- 1. a|b denotes $\{a,b\}$
- 2. (*a*|*b*)(*a*|*b*) denotes {*aa*,*ab*,*ba*,*bb*}
 i.e., (*a*|*b*)(*a*|*b*) = *aa*|*ab*|*ba*|*bb*
- 3. a^* denotes { $\epsilon, a, aa, aaa, \ldots$ }
- 4. $(a|b)^*$ denotes the set of all strings of *a*'s and *b*'s (including ϵ) i.e., $(a|b)^* = (a^*b^*)^*$
- 5. $a|a^*b$ denotes { $a,b,ab,aab,aaab,aaaab,\ldots$ }

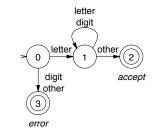
6

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for *identifier*:



identifier

$\textit{letter} \rightarrow (a \mid b \mid c \mid \dots \mid z \mid A \mid B \mid C \mid \dots \mid Z)$
$\textit{digit} \to (0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)$
$\textit{id} \rightarrow \textit{letter} (\textit{letter} \textit{digit})^*$

CS502

Scanning

Code for the recognizer

```
char \leftarrow next_char();
state \leftarrow 0;
                   /* code for state 0 */
done \leftarrow false;
token_value 
where "" /* empty string */
while( not done )
   class \leftarrow char_class[char];
   switch(state) {
      case 1:
                  /* building an id */
        token_value ← token_value + char;
         char \leftarrow next_char():
        break:
      case 2:
                  /* accept state */
         token_type = identifier;
         done = true;
         break;
      case 3:
                  /* error */
         token_type = error;
         done = true;
         break;
return token_type;
```

9

CS502

Scanning

Tables for the recognizer

Two tables control the recognizer



Automatic construction

Scanner generators automatically construct code from RE-like descriptions

- construct a DFA
- use state minimization techniques
- emit code for the scanner (table driven or direct code)

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

- emits C code for scanner
- provides macro definitions for each token (used in the parser)

To change languages, we can just change tables

11

CS502

Grammars for regular languages

Can we place a restriction on the *form* of a grammar to ensure that it describes a regular language?

Provable fact:

For any RE *r*, \exists a grammar *g* such that L(r) = L(g)

Grammars that generate regular sets are called *regular grammars*:

They have productions in one of 2 forms:

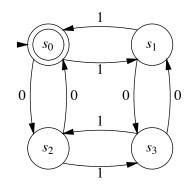
1. $A \rightarrow aA$

2.
$$A \rightarrow a$$

where A is any non-terminal and a is any terminal symbol

More regular languages

Example: the set of strings containing an even number of zeros and an even number of ones

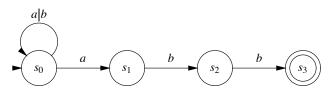


The RE is $(00 \mid 11)^*((01 \mid 10)(00 \mid 11)^*(01 \mid 10)(00 \mid 11)^*)^*$

These are also called <i>type 3</i> grammars (Chomsky)					
CS502	Scanning	13	CS502	Scanning	14

More regular expressions

What about the RE $(a \mid b)^*abb$?



State s_0 has multiple transitions on a! \Rightarrow nondeterministic finite automaton

	а	b
<i>s</i> 0	$\{s_0, s_1\}$	$\{s_0\}$
s_1	-	$\{s_2\}$
s_2	-	$\{s_3\}$

Finite automata

A non-deterministic finite automaton (NFA) consists of:

- 1. a set of *states* $S = \{s_0, ..., s_n\}$
- 2. a set of input symbols Σ (the alphabet)
- 3. a transition function *move* mapping state-symbol pairs to sets of states
- 4. a distinguished start state s_0
- 5. a set of distinguished accepting or final states F

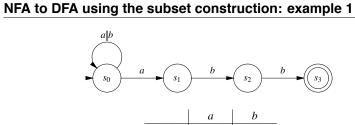
A Deterministic Finite Automaton (DFA) is a special case of an NFA:

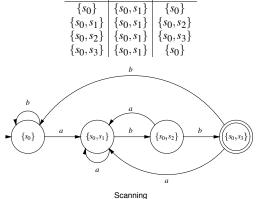
- 1. no state has a ε -transition, and
- 2. for each state *s* and input symbol *a*, there is at most one edge labelled *a* leaving *s*

A DFA *accepts* x iff. \exists a *unique* path through the transition graph from s_0 to a final state such that the edges spell x.

DFAs and NFAs are equivalent

- 1. DFAs are clearly a subset of NFAs
- 2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states:
 - each DFA state corresponds to a set of NFA states
 - possible exponential blowup





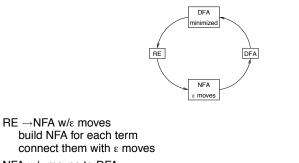
CS502

Scanning

17

CS502

Constructing a DFA from a regular expression



NFA w/ɛ moves to DFA construct the simulation the "subset" construction

 $\begin{array}{l} \text{DFA} \rightarrow \text{minimized DFA} \\ \text{merge compatible states} \end{array}$

 $\mathsf{DFA} \to \mathsf{RE}$ construct $R_{ij}^k = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \bigcup R_{ij}^{k-1}$

RE to NFA

 $N(\varepsilon)$

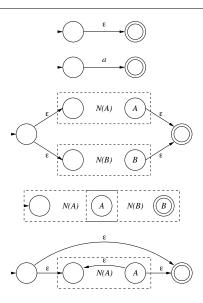
N(a)

N(A|B)

N(AB)

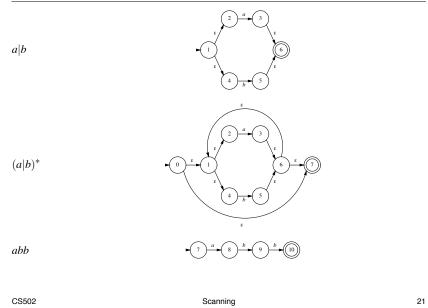
 $N(A^*)$

CS502

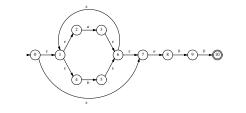


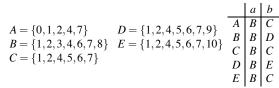
Scanning

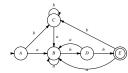
RE to NFA: example



NFA to DFA using subset construction: example 2







NFA to DFA: the subset construction

Input: NFA N

Output: DFA *D* with states *Dstates* and transitions *Dtrans* such that L(D) = L(N)Method: Let *s* be a state in *N* and *T* be a set of states, define:

Operation	Definition				
ε -closure(s) ε -closure(T) move(T,a)	set of NFA states reachable from NFA state s on ε -transitions alone set of NFA states reachable from some NFA state s in T on ε -transitions alone set of NFA states to which there is a transition on input symbol a from some NFA state s in T	!			
	$-closure(s_0)$ unmarked to $Dstates$ ked state T in $Dstates$				
for each in	for each input symbol a				
	$U = \varepsilon \text{-closure}(move(T, a))$				
	if $U \notin D$ states then add U to Dstates unmarked Dtrans $[T, a] = U$				
endfor endwhile	(- ;•·] ~				
	ε -closure(s_0) is the start state of D A state of D is final if it contains at least one final state in N				
CS502	Scanning	22			

Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

- $L = \{p^k q^k\}$
- $L = \{wcw^r \mid w \in \Sigma^*\}$

Note: neither of these is a regular expression! (DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

- alternating 0's and 1's $(\epsilon \mid 1)(01)^*(\epsilon \mid 0)$
- sets of pairs of 0's and 1's $(01 \mid 10)^+$

CS502

So what is hard?

Language features that can cause problems:	1		INTEGERFUNCTIONA
	2		PARAMETER(A=6,B=2)
reserved words	3		IMPLICIT CHARACTER*(A-B)(A-
PL/I had no reserved words	4		INTEGER FORMAT(10), IF(10), D
if then then then = else; else else = then;	5	100	FORMAT(4H)=(3)
significant blanks	6	200	FORMAT(4) = (3)
FORTRAN and Algol68 ignore blanks	7		D09E1=1
do 10 i = 1,25	8		D09E1=1,2
do 10 i = 1.25	9		IF(X)=1
string constants	10		IF(X)H=1
special characters in strings	11		IF(X)300,200
newline, tab, quote, comment delimiter	12	300	CONTINUE
finite closures	13		END
some languages limit identifier lengths		С	this is a comment
adds states to count length		:	\$ FILE(1)
FORTRAN 66 \rightarrow 6 characters	14		END

These can be swept under the rug in the language design			Example due to Dr. F.K. Zadeck of IBM Corporation	
CS502	Scanning	25	CS502	Scanning

Scanning MiniJava

White space:

Tokens:

- Operators, keywords (straightforward; I've done them for you)
- Identifiers (straightforward)
- Integers (straightforward)
- Strings (tricky for escapes)

How bad can it get?

1		INTEGERFUNCTIONA
2		PARAMETER(A=6,B=2)
3		IMPLICIT CHARACTER*(A-B)(A-B)
4		INTEGER FORMAT(10), IF(10), DO9E1
5	100	FORMAT(4H)=(3)
6	200	FORMAT(4) = (3)
7		D09E1=1
8		D09E1=1,2
9		IF(X)=1
10		IF(X)H=1
11		IF(X)300,200
12	300	CONTINUE
13		END
	С	this is a comment
	ę	FILE(1)
14		END

26