
Scanner

code
source tokens

errors

scanner parser IR

• maps characters into tokens – the basic unit of syntax

x = x + y;

becomes

<id, x> = <id, x> + <id, y> ;

• character string value for a token is a lexeme

• typical tokens: number, id, +, -, *, /, do, end

• eliminates white space (tabs, blanks, comments)

• a key issue is speed

⇒ use specialized recognizer (as opposed to lex)

Copyright c©2007 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request
permission to publish from hosking@cs.purdue.edu.

CS502 Scanning 1

Specifying patterns

A scanner must recognize the units of syntax

Some parts are easy:

white space
<ws> ::= <ws> ’ ’

| <ws> ’\t’
| ’ ’
| ’\t’

keywords and operators

specified as literal patterns: do, end

comments

opening and closing delimiters: /* · · · */

CS502 Scanning 2

Specifying patterns

A scanner must recognize the units of syntax

Other parts are much harder:

identifiers

alphabetic followed by k alphanumerics (, $, &, . . .)

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9

decimals: integer ’.’ digits from 0-9

reals: (integer or decimal) ’E’ (+ or -) digits from 0-9

complex: ’(’ real ’,’ real ’)’

We need a powerful notation to specify these patterns

CS502 Scanning 3

Operations on languages

Operation Definition
union of L and M L∪M = {s | s ∈ L or s ∈M}
written L∪M

concatenation of L and M LM = {st | s ∈ L and t ∈M}
written LM

Kleene closure of L L∗ =
S!
i=0 L

i

written L∗

positive closure of L L+ =
S!
i=1 L

i

written L+

CS502 Scanning 4

Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include both

regular expressions and regular grammars

Regular expressions (over an alphabet "):

1. # is a RE denoting the set {#}

2. if a ∈ ", then a is a RE denoting {a}

3. if r and s are REs, denoting L(r) and L(s), then:

(r) is a RE denoting L(r)

(r) | (s) is a RE denoting L(r)
S

L(s)

(r)(s) is a RE denoting L(r)L(s)

(r)∗ is a RE denoting L(r)∗

If we adopt a precedence for operators, the extra parentheses can go away. We

assume closure, then concatenation, then alternation as the order of precedence.

CS502 Scanning 5

Examples

identifier

letter → (a | b | c | ... | z | A | B |C | ... | Z)

digit → (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)

id → letter (letter | digit)∗

numbers

integer → (+ |− | #) (0 | (1 | 2 | 3 | ... | 9) digit∗)

decimal → integer . (digit)∗

real → (integer | decimal) E (+ |−) digit∗

complex → ’(’ real , real ’)’

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically

CS502 Scanning 6

Algebraic properties of REs

Axiom Description
r|s= s|r | is commutative

r|(s|t) = (r|s)|t | is associative
(rs)t = r(st) concatenation is associative
r(s|t) = rs|rt concatenation distributes over |
(s|t)r = sr|tr

#r = r # is the identity for concatenation
r#= r

r∗ = (r|#)∗ relation between ∗ and #
r∗∗ = r∗ ∗ is idempotent

CS502 Scanning 7

Examples

Let "= {a,b}

1. a|b denotes {a,b}

2. (a|b)(a|b) denotes {aa,ab,ba,bb}

i.e., (a|b)(a|b) = aa|ab|ba|bb

3. a∗ denotes {#,a,aa,aaa, . . .}

4. (a|b)∗ denotes the set of all strings of a’s and b’s (including #)

i.e., (a|b)∗ = (a∗b∗)∗

5. a|a∗b denotes {a,b,ab,aab,aaab,aaaab, . . .}

CS502 Scanning 8

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier :

0 21

3

digit

other

letter

digit

letter

other

error

accept

identifier

letter → (a | b | c | ... | z | A | B |C | ... | Z)

digit → (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)

id → letter (letter | digit)∗

CS502 Scanning 9

Code for the recognizer

char ← next char();
state ← 0; /* code for state 0 */
done ← false;
token value ← "" /* empty string */
while(not done) {

class ← char class[char];
state ← next state[class,state];
switch(state) {

case 1: /* building an id */
token value ← token value + char;
char ← next char();
break;

case 2: /* accept state */
token type = identifier;
done = true;
break;

case 3: /* error */
token type = error;
done = true;
break;

}
}
return token type;

CS502 Scanning 10

Tables for the recognizer

Two tables control the recognizer

char class:
a− z A−Z 0−9 other

value letter letter digit other

next state:

class 0 1 2 3

letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables

CS502 Scanning 11

Automatic construction

Scanner generators automatically construct code from RE-like descriptions

• construct a DFA

• use state minimization techniques

• emit code for the scanner

(table driven or direct code)

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

• emits C code for scanner

• provides macro definitions for each token

(used in the parser)

CS502 Scanning 12

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it describes a

regular language?

Provable fact:

For any RE r, ∃ a grammar g such that L(r) = L(g)

Grammars that generate regular sets are called regular grammars:

They have productions in one of 2 forms:

1. A→ aA

2. A→ a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

CS502 Scanning 13

More regular languages

Example: the set of strings containing an even number of zeros and an even

number of ones

s0 s1

s2 s3

1

1

0 0

1

1

0 0

The RE is (00 | 11)∗((01 | 10)(00 | 11)∗(01 | 10)(00 | 11)∗)∗

CS502 Scanning 14

More regular expressions

What about the RE (a | b)∗abb ?

s0 s1 s2 s3

a b

a b b

State s0 has multiple transitions on a!

⇒ nondeterministic finite automaton

a b

s0 {s0,s1} {s0}
s1 – {s2}
s2 – {s3}

CS502 Scanning 15

Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states S= {s0, . . . ,sn}

2. a set of input symbols " (the alphabet)

3. a transition function move mapping state-symbol pairs to sets of states

4. a distinguished start state s0

5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a #-transition, and

2. for each state s and input symbol a, there is at most one edge labelled a

leaving s

A DFA accepts x iff. ∃ a unique path through the transition graph from s0 to a final

state such that the edges spell x.

CS502 Scanning 16

DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of simultaneous

states:

• each DFA state corresponds to a set of NFA states

• possible exponential blowup

CS502 Scanning 17

NFA to DFA using the subset construction: example 1

s0 s1 s2 s3

a b

a b b

a b

{s0} {s0,s1} {s0}
{s0,s1} {s0,s1} {s0,s2}
{s0,s2} {s0,s1} {s0,s3}
{s0,s3} {s0,s1} {s0}

s0 s0 s1 s0 s2 s0 s3

b

a b b

b

a

a

a

CS502 Scanning 18

Constructing a DFA from a regular expression

DFA

DFA

NFA

RE

minimized

moves#

RE→NFA w/# moves
build NFA for each term
connect them with # moves

NFA w/# moves to DFA
construct the simulation
the “subset” construction

DFA→ minimized DFA
merge compatible states

DFA→ RE
construct Rki j = Rk−1

ik
(Rk−1
kk

)∗Rk−1
k j

S

Rk−1i j

CS502 Scanning 19

RE to NFA

N(#)
#

N(a)
a

N(A|B)

#
AN(A)

N(B) B

#

##

N(AB) AN(A) N(B) B

N(A∗)

#

AN(A)

#
#

CS502 Scanning 20

RE to NFA: example

a|b 1

2 3

6

4 5

#

#

#

a

b

(a|b)∗ 0 1

2 3

6

4 5

7
#

#

#

#

#

a

b

#

#

abb 7 8 9 10
a b b

CS502 Scanning 21

NFA to DFA: the subset construction

Input: NFA N

Output: DFA D with states Dstates and transitions Dtrans such that L(D) = L(N)
Method: Let s be a state in N and T be a set of states, define:

Operation Definition
#-closure(s) set of NFA states reachable from NFA state s on #-transitions alone
#-closure(T) set of NFA states reachable from some NFA state s in T on #-transitions alone
move(T,a) set of NFA states to which there is a transition on input symbol a from some

NFA state s in T

add state T = #-closure(s0) unmarked to Dstates
while ∃ unmarked state T in Dstates

mark T
for each input symbol a

U = #-closure(move(T,a))
if U *∈ Dstates then add U to Dstates unmarked
Dtrans[T,a] =U

endfor
endwhile

#-closure(s0) is the start state of D
A state of D is final if it contains at least one final state in N

CS502 Scanning 22

NFA to DFA using subset construction: example 2

0 1

2 3

6

4 5

7
#

#

#

#

#

a

b

#

#

8 9 10
a b b

A= {0,1,2,4,7} D= {1,2,4,5,6,7,9}
B= {1,2,3,4,6,7,8} E = {1,2,4,5,6,7,10}
C = {1,2,4,5,6,7}

a b

A B C

B B D

C B C

D B E

E B C

A B

C

D E

b

a b b

a

a

a

a

b

b

CS502 Scanning 23

Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

• L= {pkqk}

• L= {wcwr | w ∈ "∗}

Note: neither of these is a regular expression!

(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

• alternating 0’s and 1’s

(# | 1)(01)∗(# | 0)

• sets of pairs of 0’s and 1’s

(01 | 10)+

CS502 Scanning 24

So what is hard?

Language features that can cause problems:

reserved words
PL/I had no reserved words
if then then then = else; else else = then;

significant blanks
FORTRAN and Algol68 ignore blanks
do 10 i = 1,25
do 10 i = 1.25

string constants
special characters in strings
newline, tab, quote, comment delimiter

finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN 66→ 6 characters

These can be swept under the rug in the language design

CS502 Scanning 25

How bad can it get?

1 INTEGERFUNCTIONA
2 PARAMETER(A=6,B=2)
3 IMPLICIT CHARACTER*(A-B)(A-B)
4 INTEGER FORMAT(10),IF(10),DO9E1
5 100 FORMAT(4H)=(3)
6 200 FORMAT(4)=(3)
7 DO9E1=1
8 DO9E1=1,2
9 IF(X)=1
10 IF(X)H=1
11 IF(X)300,200
12 300 CONTINUE
13 END

C this is a comment
$ FILE(1)

14 END

Example due to Dr. F.K. Zadeck of IBM Corporation

CS502 Scanning 26

Scanning MiniJava

White space:

• ’ ’, ’\t’, ’\n’, ’\r’, ’\f’

Tokens:

• Operators, keywords (straightforward; I’ve done them for you)

• Identifiers (straightforward)

• Integers (straightforward)

• Strings (tricky for escapes)

CS502 Scanning 27

