
CS 502 – Compiling and Programming Systems
Mid-term Examination, 3/24/11

Instructions: Read carefully through the whole exam first and plan your time. Note the
relative weight of each question and part (as a percentage of the score for the whole exam).
The total points is 100 (ie, your grade will be the percentage of your answers that are correct).

This exam is open book, open notes. You are free to refer to any book or other study materials
you bring to the exam room.

You have 75 minutes to complete all five (5) questions. Write your answers on this paper (use
both sides if necessary).

Name:

Student Number:

Signature:

1. (10%) This is a thought/essay question (but don’t write too much!). In FORTRAN FORMAT
statements, there can appear a lexical entity known as a Hollerith constant. Its form is some
decimal digits giving a count (say n), the letter H, and then n characters. The overall effect is
to form a string constant n characters long. Examples include 3HYES, 2HNO, and 5HXtYtZ,
where t indicates a space character.

(a) (5%) Is it possible to specify the language of Hollerith constants using an NFA or
DFA? Is the language of Hollerith constants regular?
Answer:

The language of Hollerith constants cannot be specified using an NFA/DFA; it
is not regular. The counting involved in counting out the number of characters
to the right of the H requires an unbounded number of states.

(b) (5%) Would Hollerith constants be easy or hard to process with a table driven scanner?
With a hand-written one? Explain your easy/hard judgments.
Answer:

Hollerith constants would be difficult or impossible to handle with a pure ta-
ble driven scanner, because they are not regular. If one could extend the table
driven scanner to (a) associate arbitrary actions with any transition and (b)
allow actions to help decide the target state of a transition, then one could
process Hollerith constants with such an extended table driven scanner. One
would use actions to compute (into a global variable) the length of the con-
stant, and then count the length down on the right hand side. It would be
fairly easy to process Hollerith constants in a hand written scanner, using the
technique just described.

2

2. (45%) Consider the following grammar:

S → A
A → xA | yA | y

(a) (5%) Give the LL(1) parse table for this grammar.
Answer:

x y $
S S→ A S→ A
A A→ xA A→ yA

A→ y

(b) (10%) Is the grammar LL(1) or not? Explain your answer. If not, transform the gram-
mar into one that is LL(1), and give the LL(1) parse table for the transformed grammar.
Answer:

There is a conflict in entry [A,y] so the grammar is not LL(1). Left-factoring
produces the following grammar:

S → A
A → xA | yB
B → A | ε

x y $
S S→ A S→ A
A A→ xA A→ yB
B B→ A B→ A B→ ε

(c) (10%) Construct the LR(0) item sets for the original grammar. Is the grammar LR(0)?
Why or why not?
Answer:

I0 = {[S→•A], [A→•xA], [A→•yA], [A→•y]}
I1 = GOTO(I0,A) = {[S→ A•]}
I2 = GOTO(I0,y) = {[A→ y•A], [A→ y•], [A→•xA], [A→•yA], [A→•y]}
I3 = GOTO(I0,x) = {[A→ x•A], [A→•xA], [A→•yA], [A→•y]}
I4 = GOTO(I2,A) = {[A→ yA•]}
I5 = GOTO(I3,A) = {[A→ xA•]}
GOTO(I2,y) = GOTO(I3,y) = I2
GOTO(I2,x) = GOTO(I3,x) = I3

The grammar is not LR(0). There is a SHIFT-REDUCE conflict in I2.

3

(d) (10%) Construct the SLR(1) parse table for the original grammar. Is the grammar
SLR(1)? Why or why not?
Answer:

ACTION GOTO
x y $ S A

0 s3 s2 1
1 a
2 s3 s2 rA→y 4
3 5
4 rA→yA
5 rA→xA

Yes, the grammar is SLR(1). There are no conflicts in the parse table.

(e) (5%) Is the grammar LR(1)? Why or why not?
Answer:

Yes, the grammar is LR(1) since every SLR(1) grammar is LR(1).

(f) (5%) Exhibit an unambiguous grammar that is not LR(1).
Answer:

There are infinitely many unambiguous non-LR(1) grammars. Here is one of
the simpler ones:

S → Axy | Bxz
A → a
B → a

The grammar is unambiguous; it contains exactly two strings, each of which
has a unique derivation.
However, the grammar is not LR(1). Consider an input that begins with ax.
After shifting a, the LR(1) parser must decide whether to reduce a to A or B.
Based solely on the lookahead character x, we cannot decide which production
to choose; only by looking two characters ahead to see if a y appears (in which
case, reduce to A) or a z appears (in which case, reduce to a B) can the decision
be resolved deterministically.

4

3. (10%) Consider the following grammar:

S → X
X → YaY b | ZbZa
Y → ε

Z → ε

(a) (5%) Is this grammar LL(1)? Why or why not?
Answer:

The grammar is LL(1) because one of the right hand sides of X has {a} as
its FIRST set, and the other has {b}, and the right hand sides of Y and Z are
unique. This is the only requirement for an LL(1) grammar.

(b) (5%) Is it SLR(1)? Why or why not?
Answer:

The grammar is not SLR(1), because SLR(1) parsers use FOLLOW sets to
determine the lookahead symbols. When the parse table is built, the first set
of items will contain

[X →•YaY b], [X →•ZbZa], [Y →•], [Z→•]

Since both a and b are in the FOLLOW sets for Y and Z, the reductions to
both Y → ε and Z→ ε will be entered in the columns headed by a and b, thus
producing a REDUCE-REDUCE conflict. So, the grammar is not SLR(1).

5

4. (15%) Consider the following grammar:

S → A
A → A+A | B++
B → y

(a) (5%) Draw the parse tree for the input y+++ y++.
Answer:

(b) (10%) Show the steps of an LR(1) parse of the input y+++ y++, showing the input
as it is consumed, the parse stack (left is bottom, right is top) at each step of the parse,
and the action applied at each step.
Answer:

Stack Input Action
$ y+++ y++$ s
$y +++y++$ rB→y
$B +++y++$ s
$B+ ++ y++$ s
$B++ +y++$ s
$B++ +y++$ rA→B++

$A +y++$ s
$A+ y++$ s
$A+ y ++$ rB→y
$A+B ++$ s
$A+B+ +$ s
$A+B++ $ rA→B++

$A+A $ rA→A+A
$A $ rS→A
$S $ a

6

5. (20%) The following grammar describes a fragment of the syntax of an M3-like language
using the same conventions as in the project. The productions for AssignSt are left unspec-
ified. Id represents a variable name and Number represents an integer literal.

Program = Stmts.

Stmts = Stmt Stmts | Stmt.

Stmt = AssignSt | ForSt.

ForSt = FOR Id ":=" Number TO Number DO Stmts END ";".

(a) (5%) Draw the parse tree for the following statements:

FOR i := 1 TO 100 DO

AssignSt

AssignSt

END;

AssignSt

(b) (10%) Write an attribute grammar that computes the number of executed statements for
a program conforming to this grammar. For each attribute in your attribute grammar,
say whether it is synthesized or inherited.
Answer:

The attributes are cnt and val. Both are synthesized attributes because their
values are propagated up the tree.
Program = PROCEDURE Stmts. Program.cnt = Stmts.cnt
Stmts0 = Stmt Stmts1. Stmts0.cnt = Stmt.cnt + Stmts1.cnt
Stmts = Stmt. Stmts.cnt = Stmt.cnt
Stmt = ForSt. Stmt.cnt = ForSt.cnt
Stmt = AssignSt. Stmt.cnt = 1

ForSt =

FOR Id ":="

Number0 TO Number1
DO Stmts END ";".

ForSt.cnt = Stmts.cnt
× max(0, Number2.val −
Number1.val+1)

(c) (5%) Annotate the parse tree for the program fragment of question 5a with the com-
puted attribute values. [You need not redraw the parse tree here. Simply add to your
drawing of the parse tree in 5a.]

7

