
CS 502 – Compiling and Programming Systems
Final and Qualifying Examination, 5/3/11

Instructions: Read carefully through the whole exam first and plan your time. Note the
relative weight of each question and part (as a percentage of the score for the whole exam).
The total points is 100 (ie, your grade will be the percentage of your answers that are correct).

This exam is open book, open notes. You are free to refer to any book or other study materials
you bring to the exam room.

You have 2 hours to complete all five (5) questions. Write your answers on this paper (use
both sides if necessary).
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1. (LALR parsing; 20%) Consider the following grammar:

S′ → S
S → aAd | bBd | aBe | bAe
A → c
B → c

(a) (10%) Is this grammar LR(1)? Why or why not?

(b) (5%) Is it LALR(1)? Why or why not?

(c) (5%) Suppose we have an LR(1) grammar (i.e., one whose LR(1) items produce no
parsing action conflicts). Explain why the LALR(1) table construction for any LR(1)
grammar cannot introduce shift-reduce conflicts.
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2. (Run-time management; 20%) Consider the following M3 program as it executes:

1 MODULE List;
2 TYPE
3 T = OBJECT
4 head: INTEGER;
5 tail: T;
6 METHODS
7 merge(t: T): T := Merge;
8 END;
9 PROCEDURE Cons(head: INTEGER; tail: T): T =

10 VAR t := NEW(T);
11 BEGIN
12 t.head := head;
13 t.tail := tail;
14 RETURN t;
15 END Cons;
16 PROCEDURE Merge(this, other: T): T =
17 BEGIN
18 IF other = NIL THEN
19 RETURN this;
20 ELSIF this.head < other.head THEN
21 RETURN Cons(this.head, other.merge(this.tail));
22 ELSE
23 RETURN Cons(other.head, this.merge(other.tail));
24 END;
25 END Merge;
26 VAR
27 t1 := Cons(1, Cons(3, NIL));
28 t2 := Cons(2, Cons(4, NIL));
29 t := t1.merge(t2);
30 BEGIN
31 END List.

(a) (15%) Show a diagram of MIPS stack frames at the point when this program is execut-
ing line 19 of Merge where other=NIL. Show where all the local variables and heap
variables are (assume that all local variables are stored in memory in the stack, not in
registers); show the value of all integer variables in the stack and heap, as well as each
variable containing a reference to the heap, and the object it refers to.

(b) (5%) Show a diagram of MIPS stack frames at the point when this program has finished
executing line 29 after assigning to t. Show where all the local variables and heap
variables are (assume that all local variables are stored in memory in the stack, not in
registers); show the value of all integer variables in the stack and heap, as well as each
variable containing a reference to the heap, and the object it refers to.

3



3. (Liveness analysis and register allocation; 25%) The following program has been compiled
for a machine with 2 registers:

• r1: a callee-save register

• r2: a caller-save argument/result register

a := r1
b := r2
r2 := b
call f
c := r2
if b > N goto L1 (∗ N is a constant ∗)
d := b - c
goto L2

L1:
d := b
c := b + d

L2:
b := c * d
r2 := b
r1 := a
return

(a) (5%) Perform liveness analysis for this program annotating each instruction with the
temporaries/registers live-out at that instruction.

(b) (5%) Fill in the following adjacency table representing the interference graph for the
program; an entry in the table should contain an × if the variable in the left column
interferes with the corresponding variable/register in the top row. Since machine regis-
ters are pre-colored, we choose to omit adjacency information for them; you must treat
them as having infinite degree. Naturally, you must still record if a non-precolored
node interferes with a pre-colored node; the columns for pre-colored nodes are there
for that purpose.
Also, record the unconstrained move-related nodes in the table by placing an ◦ in any
empty entry where the variable in the left column is the source or target of any move
involving the variable/register in the top row.

r1 r2 a b c d
a
b
c
d

(c) (15%) Perform iterated coalescing register allocation for this program, showing the
steps in detail (you will want to copy and amend the above adjacency table at each
step to keep track of the interference graph as it changes), and the final code for the
program. Use the George criterion for coalescing.
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4. (Loop optimization; 15%) Consider the following C code fragment:

int i, j;
int A[50,100];
int B[50], Y[50];
int X[100];

for (i = 50; --i >= 0; ) {
Y[i] = B[i];
for (j = 100; --j >= 0; )

Y[i] += A[i,j] * X[j];
}

(a) (Control flow graphs; 5%) Draw a control flow graph for the code fragment, with basic
blocks as nodes, and making addressing code explicit. For example, the array access
A[i,j] should be written *(A+100*i+j).

(b) (Factoring invariants; 5%) Using your previous answer, identify loop invariant expres-
sions and factor loop invariants.

(c) (Strength reduction; 5%) Using your previous answer, identify loop induction expres-
sions and loop induction variables, then perform strength reduction. Do this only for
the inner loop.
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5. (Run-time management, data-flow analysis; 20%) Consider the difference between ‘boxed’
and ‘unboxed’ data. Boxed data is allocated explicitly on the heap whereas unboxed data
is allocated statically (for globals) or dynamically on the stack (for locals). For example, in
M3, a programmer will write:

VAR v: T;

to allocate an unboxed (local or global) value of type T, and

VAR v := NEW(REF T);

to allocate a boxed (heap) value of type T.

Now, consider the case when the boxed value is manipulated, but its pointer never escapes
the procedure that allocated it. For example:

PROCEDURE foo(): T =
VAR v := NEW(REF T);
BEGIN
vˆ := ...;
doSomething(vˆ); (∗ no escape even if the target of v is passed by reference ∗)
RETURN vˆ;

END foo;

The programmer could just as easily write the following equivalent code:

PROCEDURE foo(): INTEGER =
VAR v: T;
BEGIN
v := ...;
doSomething(v);
RETURN v;

END foo;

This would probably be more efficient because the storage for v can be allocated automat-
ically in the stack frame for foo. Unfortunately, languages like Java do not allow unboxed
objects or arrays, requiring that they always be allocated using new. Yet, modern Java virtual
machines support automatic unboxing of objects and arrays whenever possible. Underlying
this optimization is a data flow analysis called escape analysis which determines when a
reference to locally-allocated storage may escape.

Your task is to devise an intra-procedural escape analysis for heap-allocated data in M3.
State your assumptions carefully. For simplicity, you should assume that any statement that
may store a reference to a heap variable causes that reference to escape. For example, the
assignment p.f := v in the following program may cause the reference held by the variable
v to escape:

TYPE P = REF RECORD f: REF T END;
PROCEDURE bar(p: P) =
VAR v := NEW(REF T);
BEGIN

6



p.f := v;
END bar;

In devising your analysis be sure to answer each of the following questions:

(a) What information does your data flow analysis propagate?

(b) Is your analysis forward flow or backward flow?

(c) What statements generate flow information and what statements kill flow information?

(d) How do you handle flow merges? Is the flow any-path or all-paths?

(e) Finally, describe how you might improve your analysis to take account of the fact that
an assignment p.f := v need not cause the reference v to escape if p itself does not
escape. For example:

1 PROCEDURE baz() =
2 VAR
3 p := NEW(REF RECORD f: REF T END);
4 v := NEW(REF T);
5 BEGIN
6 p.f := v;
7 END baz;

does not lead to the boxed T value allocated on line 4 escaping because the target of p
itself doesn’t escape.
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