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1. (LALR parsing; 10%) Consider the following augmented grammar:

S′ → S
S → aBc | bCc | aCd | bBd
B → e
C → e

(a) (5%) Is this grammar LR(1)? Why or why not?
Answer:

Here are the LR(1) item sets:

0 : S′ →•S {$}
S →•aBc {$}
S →•bBd {$}
S →•aCd {$}
S →•bCc {$}

1 : S →a•Bc{$}
S →a•Cd{$}
B →•e {c}
C →•e {d}

2 : S →b•Bd{$}
S →b•Cc{$}
B →•e {d}
C →•e {c}

3 : S →aB• c{$}
4 : S →aC •d{$}
5 : B →e• {c}

C →e• {d}
6 : S →bB•d{$}
7 : S →bC • c{$}
8 : B →e• {d}

C →e• {c}
9 : S →aBc• {$}
10 : S →aCd• {$}
11 : S →bBd• {$}
12 : S →bCc• {$}

There are no conflicts so this grammar is LR(1).

(b) (5%) Is this grammar LALR(1)? Why or why not?
Answer:

This grammar is not LALR(1). Consider merging states 5 and 8. This will
introduce reduce-reduce conflicts.
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2. (Semantics, code generation, run-time; 25%) Consider the Java synchronized statement:

A synchronized statement acquires a mutual-exclusion lock on behalf of the
executing thread, executes a block, then releases the lock. While the executing
thread owns the lock, no other thread may acquire the lock.

SynchronizedStatement:
synchronized (Expression) Block

The type of Expression must be a reference type, or a compile-time error oc-
curs.
A synchronized statement is executed first by evaluating the Expression.
If evaluation of the Expression completes abruptly for some reason, then the
synchronized statement completes abruptly for the same reason.
Otherwise, if the value of the Expression is null, a run-time error occurs.
Otherwise, let the non-null value of the Expression be v. The executing thread
acquires the lock associated with v. Then the Block is executed. If execution of
the Block completes normally, then the lock is unlocked and the synchronized
statement completes normally. If execution of the Block completes abruptly for
any reason, then the lock is unlocked and the synchronized statement then
completes abruptly for the same reason.
Acquiring the lock associated with an object does not of itself prevent other
threads from accessing fields of the object or invoking unsynchronized meth-
ods on theb object. Other threads can also use synchronized methods or the
synchronized statement in a conventional manner to achieve mutual exclusion.
The locks acquired by synchronized statements are the same as the locks that
are acquired by synchronized methods. A single thread may hold a lock more
than once.
The example:

class Test {
public static void main (String[] args) {
Test t = new Test();
synchronized (t) {
synchronized (t) {
System.out.println("made it!");

}
}

}

prints made it!

This example would deadlock if a single thread were not permitted to acquire a
lock more than once.
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Consider the steps needed to add the synchronized statement to MiniJava. Recall that
statements causing abrupt completion include break, continue, and return. Also, as-
sume that the MiniJava compiler and run-time library already supports the creation of threads,
and that the run-time library contains support for a primitive Lock implementing the lock
semantics described above (including that the same thread can reacquire the lock):

class Lock() {
void acquire(); // Acquire this lock for the current thread.
void release(); // Release this lock for the current thread.

}

(a) (5%) What changes are needed in the front-end (scanner/parser/type-checker)?
Answer:

New keyword synchronized.
Parsing and abstract syntax representing synchronized statements.
Type-checker must make sure Expression has reference type.

(b) (5%) What changes are needed in the run-time representation of arrays/objects?
Answer:

Every object needs potentially to associate a lock. We need to store sufficient
information inside the object to obtain its lock. The simplest approach is to
allocate a Lock instance for every allocated object, and store it in a lock field
in the object header.

(c) (10%) Give a code template for translating synchronized blocks.
Answer:

v = Expression;
v.lock.acquire();
Block;
v.lock.release();
goto exit;

breakLabel:
v.lock.release();
break;

continueLabel:
v.lock.release();
continue;

returnLabel:
v.lock.release();
return result;

exit:

Inside the Block, break translates to:
goto breakLabel;

continue generates:
goto continueLabel;

and return [Expression] generates:
[ result := Expression; ]
goto returnLabel;

for optional Expression.
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(d) (5%) Assuming that most objects never need an associated lock (ie, they are never
synchronized), what unnecessary overheads (in space and time) does adding support
for synchronized statements impose on programs that never execute them? What
about programs that run only one thread or never share references between threads?
Answer:

We must associate a lock object with every object, even if that object is never
synchronized. Single-threaded programs will pay the cost of lock acquire/re-
lease even though the locks are uncontended. Similarly for unshared refer-
ences.
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3. (Semantics, code generation, run-time; 10%) Consider an extension of Java that introduces
the atomic statement. An atomic statement is similar to a synchronized statement:

atomic Block

except that it has no Expression with which to designate an associated lock.

The atomic statements can be simulated by rewriting them at the source-code level as:
synchronized (Object.class) Block

That is, each atomic statement ensures mutual exclusion (ie, serial execution) with respect
to all other atomic statements, as if they all used some unique global lock (in this case the
unique lock associated with Object.class).

Of course, implementing atomic statements in this way would impede thread concurrency.
So long as an implementation preserves the illusion that atomic statements execute serially
(one after another, and not overlapped) then that implementation is correct.

The only way any pair of atomic statements executing concurrently (in different threads)
can break the illusion of serial execution is if they conflict: the memory locations stored
by one thread overlap with the memory locations loaded by the other thread. Architecture
designers have proposed atomic hardware instructions that directly support this model:

• chkpt fail_pc: begin logging memory loads/stores, on conflict discard memory
stores and branch to fail_pc

• commit: stop logging memory loads/stores

For simplicity you may assume that nested pairs of chkpt/commit instructions are dis-
carded by the hardware (ie, only top-level chkpt/commit pairs have any effect). Note that
the hardware logs only memory and on conflict discards only memory stores.

Describe how you would translate atomic statements. In particular, give a code template
for translating atomic statemements.
Answer:

Translation is much the same as for synchronized statements, with chkpt

/commit in place of acquire/release, except that we must save the live regis-
ters before the checkpoint, and restore them on failure.

save registers
retry:
chkpt fail
Block
commit
goto exit

breakLabel:
commit;
break;

continueLabel:
commit;
continue;

returnLabel:
commit;
return result;

fail:
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restore registers
goto retry;

exit:
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4. (Liveness analysis and register allocation; 35%) Consider the following MiniJava program:
class Fact {
static int f (int n) {
if (n > 1) return Fact.f(n-1) * n;
return 1;

}
}

Assume that we are generating MIPS instructions, but for a machine with only two general-
purpose registers:

• $a0: a caller-saved argument/result (live on exit) register

• $s0: a callee-save register

The MiniJava compiler generates the following MIPS instructions for the method Fact.f:
move n $a0

L.5:
bgt n 1 L.4

L.3:
li t3 1
move $a0 t3
b L.0

L.4:
subu t4 n 1
move t1 t4
move $a0 t1
jal Fact.f
move t2 $a0
mul t5 t2 n
move $a0 t5
b L.0

L.6:
b L.3

L.0:

(a) (Basic blocks, control flow graphs; 10%) Identify the basic blocks in this code, and
draw its intraprocedural control flow graph (CFG) having nodes which are the basic
blocks and edges representing control flow among them. For each basic block, summa-
rize the temporaries/registers used by the block (before they are defined) and defined
by the block. Annotate the edges of the CFG with the temporaries/registers live on that
edge.
Answer:

0: def = n, use = $a0 ; goto 1 live = n
Fact.f:

move n $a0

1: use = n ; goto 3 live = n, goto 2 live =
L.5:

bgt n 1 L.4

2: def = (t3 $a0) ; goto 5 live = $a0
L.3:

li t3 1
move $a0 t3
b L.0

3: def = t4 t1 $a0 t2 t5, use = n ; goto 5 live = $a0
L.4:
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subu t4 n 1
move t1 t4
move $a0 t1
jal Fact.f
move t2 $a0
mul t5 t2 n
move $a0 t5
b L.0

4: goto 2 live = $a0
L.6:

b L.3

5: use = $a0; live = $a0
L.0:

(b) (Interference graphs; 10%) Fill in the following adjacency table representing the inter-
ference graph for the method; an entry in the table should contain an× if the variable in
the left column interferes with the corresponding variable/register in the top row. Since
machine registers are pre-colored, we choose to omit adjacency information for them.
Naturally, you must still record if a non-precolored node interferes with a pre-colored
node; the columns for pre-colored nodes are there for that purpose.
Also, record the unconstrained move-related nodes in the table by placing an ◦ in any
empty entry where the variable in the left column is the source or target of any move
involving the variable/register in the top row. Remember that nodes that are move-
related should not interfere if their live ranges overlap only starting at the move.

$s0 $a0 t1 t2 t3 t4 t5 n
t1
t2
t3
t4
t5
n

Answer:

$s0 $a0 t1 t2 t3 t4 t5 n
t1 ◦ ◦ ×
t2 ◦ ×
t3 ◦
t4 ◦ ×
t5 ◦
n × × × ×

(c) (Register allocation; 10%) Show the steps of a coalescing graph-coloring register allo-
cator as it assigns registers to the variables in the method. Use the George criterion for
coalescing nodes: node a can be coalesced with node b only if all significant-degree (ie,
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degree >= K) neighbors of a already interfere with b. Show the final method, noting
any redundant moves.
Answer:

i. No non-move-related low-degree node
ii. Coalesce t5 with $a0

$s0 $a0 t1 t2 t3 t4 n
t1 ◦ ◦ ×
t2 ◦ ×
t3 ◦
t4 ◦ ×
n × × × ×

iii. Coalesce t4 with t1

$s0 $a0 t1 t2 t3 n
t1 ◦ ×
t2 ◦ ×
t3 ◦
n × × ×

iv. Coalesce t3 with $a0

$s0 $a0 t1 t2 n
t1 ◦ ×
t2 ◦ ×
n × × ×

v. Coalesce t2 with $a0

$s0 $a0 t1 n
t1 ◦ ×
n × ×

vi. Coalesce t1 with $a0

$s0 $a0 n
n ×

vii. Simplify n

viii. Select: n=$s0, t1/t2/t3/t4/t5=$a0
ix. Result:
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move $s0 $a0
L.5:

bgt $s0 1 L.4
L.3:

li $a0 1
# move $a0 $a0

b L.0
L.4:

subu $a0 $s0 1
# move $a0 $a0
# move $a0 $a0

jal Fact.f
# move $a0 $a0

mul $a0 $a0 $s0
# move $a0 $a0

b L.0
L.6:

b L.3
L.0:

(d) (Procedure prologue/epilogue; 5%) The code so far does not include a prologue or
epilogue. Write the prologue and epilogue for this method. Remember to save/restore
any callee-save registers it defines.
Answer:

Prologue:
sw $ra -8($sp)
sw $s0 -4($sp)
subu $sp Fact.f.framesize

Epilogue:
addu $sp Fact.f.framesize
lw $s0 -4($sp)
lw $ra -8($sp)
j $ra

5. (A challenge!; 20%) The Java Language Specification requires that every program pass a
definite assignment analysis to make sure that every local variable has been definitely as-
signed before it is accessed; otherwise a compile-time error must occur.

The idea behind definite assignment is that an assignment to the local variable must occur on
every execution path to the access. The analysis takes into account the structure of statements
and expressions; it also provides a special treatment of the expression operators !, &&, , and
? :, and of boolean-valued constant expressions.

For example, a Java compiler recognizes that k is definitely assigned before its access (as an
argument of a method invocation) in the code:

{
int k;
if (v > 0 && (k = System.in.read()) >= 0)
System.out.println(k);

}

because the access occurs only if the value of the expression:
v > 0 && (k = System.in.read()) >= 0
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is true, and the value can be true only if the assignment to k is executed (more properly,
evaluated).

Similarly, a Java compiler will recognize that in the code:
{
int k;
while (true) {
k = n;
if (k >= 5) break;
n = 6;

}
System.out.println(k);

}

the variable k is definitely assigned by the while statement because the condition expres-
sion true never has the value false, so only the break statement can cause the while
statement to complete normally, and k is definitely assigned before the break statement.
On the other hand, the code:

{
int k;
while (n < 4) {
k = n;
if (k >= 5) break;
n = 6;

}
System.out.println(k); // k is not definitely assigned before this

}

must be rejected by a Java compiler, because in this case the while statement is not guaran-
teed to execute its body as far as the rules of definite assignment are concerned.

Except for the special treatment of the conditional boolean operators &&, , and ? : and of
boolean-valued constant expressions, the values of expressions are not taken into account
in the flow analysis.

For example, a Java compiler must produce a compile-time error for the code:
{
int k;
int n = 5;
if (n > 2)
k = 3;

System.out.println(k); // k is not definitely assigned before this
}

even though the value of n is known at compile time, and in principle it can be known at
compile time that the assignment to k will always be executed (more properly, evaluated). A
Java compiler must operate according to rules that recognizes only constant expressions; in
this example, the expression n>2 is not a constant expression.

As another example, a Java compiler will accept the code:
void flow(boolean flag) {
int k;
if (flag)
k = 3;

else
k = 4;

System.out.println(k);
}
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as far as definite assignment of k is concerned, because the rules allow it to tell that k is
assigned no matter whether the flag is true or false. But the rules do not accept the
variation:

void flow(boolean flag) {
int k;
if (flag)
k = 3;
if (!flag)
k = 4;

System.out.println(k); // k is not definitely assigned before here

and so compiling this program must cause a compile-time error to occur.

You may find the following definitions useful:

before — variables definitely assigned before evaluation of a given statement or expression
after — variables definitely assigned after evaluation of a given statement or expression,

assuming it completes normally (ie, not abruptly)
vars — all variables available in the scope of a given statement or expression
true — variables definitely assigned after evaluation of a given expression, assuming the

expression evaluates to true

false — variables definitely assigned after evaluation of a given expression, assuming the
expression evaluates to false

as you consider the data flow equations that arise for each syntactic statement or expression
in Java.

Sketch how to perform definite assignment analysis for MiniJava (ie, ignore constructs for
exceptions: try, throw, catch). Initially, ignore the difficulties posed by statements that
cause abrupt completion of their enclosing statement: break, continue, and return.
Then, describe how these can be incorporated into your analysis by considering what impli-
cations they have for the flow nodes that they target.
Answer:

See http://en.wikipedia.org/wiki/Definite_assignment_analysis.
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