Answer 4 (Michael Huffman)

a)

If the node ab has fewer than K neighbors of any degree, we can still color after this coalesce. Before this coalesce was done, the sum of the neighbors of a and b is less than K because this is the only way the coalesced node could have that many neighbors. Since the sum of the neighbors of a and b is less than K, the simplify phase will eliminate these insignificant degree neighbors of a and b. Thus, we can always color nodes using the simplified conservative coalescing so there is no potential spilling being added.

b)

Simplify a, i, j, and b so our stack becomes: a, i, j, h

Simplify b and c so our stack becomes: a, i, j, h, b, c
Coalesce d with f.

Simplify c and g so our stack becomes: a i j h b c e g.

Select color 1 for g, color 1 for e, and color 2 for d and f.

Select color 1 for c, color 3 for b, color 3 for h, color 1 for j, color 1 for i, and color 3 for a.

Using the graph in II.3 to show this simplified test is less effective than standard conservative coalescing.

If we use Briggs criterion, we can coalesce f with g since fg is adjacent to less than K significant degree neighbors (a and d have degree 4).

However, we can't use the simplified test here because fg is adjacent to 5 nodes. In order to use the simplified test, the node fg needs to be adjacent to less than 4 nodes. Thus, there are instances where we could use standard conservative coalescing but not the simplified test so the simplified test is less effective than standard conservative coalescing.
less effective than standard conservative coalescing.