1. Draw a finite automaton accepting each of the following languages:

 (a) \(\{ w \in \{a, b\}^* \mid w \text{ starts with } 'a' \text{ and contains 'baba' as a substring} \} \)

 (b) \(\{ w \in \{0, 1\}^* \mid w \text{ contains '111' as a substring and does not contain } 00 \text{ as a substring} \} \)

 (c) \(\{ w \in \{a, b, c\}^* \mid \text{the number of 'a's modulo 2 is equal to the number of 'b's modulo 3 in } w \} \)

2. Write a regular expression for each of the following languages \(L \):

 (a) \(L = \{ w \in \{0, 1\}^* \mid w \text{ consists of alternating '0's and '1's} \} \)

 (b) \(L = \{ w \in \{0, 1\}^* \mid w \text{ contains an even number of '0's or an even number of '1's} \} \)

 (c) \(L = \{ w \in \{a, \ldots, z\}^* \mid \text{the letters in } w \text{ appear in lexicographical order} \} \)

 (d) Given \(\Sigma = \{a, b, c, d\} \),

 \[L = \{ w = xyzwy \mid x, w \in \Sigma^+, y \in \Sigma, z \in \Sigma \} \]

 [Each string \(xyzwy \) contains two words \(xy \) and \(wy \) built from letters in \(\Sigma \). The words end in the same letter, \(y \). They are separated by \(z \).]

 (e) \(L = \{ w \in \{+, -, \times, \div, (,), \text{id}\}^* \mid w \text{ is an algebraic expression using addition, subtraction, multiplication, division, and parentheses over } \text{id}s \} \)

3. Using the subset construction, convert the following regular expressions to a DFA, merging equivalent states where possible:

 (a) \((ab \mid ac)^* \)

 (b) \((0|1)^* \ 1100 \ 1^* \)

 (c) \((01|10|00)^* \ 11 \)

4. Show that regular languages are closed under intersection. That is, show that for any two regular languages \(L_1 \) and \(L_2 \), \(L = L_1 \cap L_2 \) is also regular.

5. The following grammar is not suitable for a top-down predictive parser. Fix the problem by rewriting the grammar. Construct the LL(1) parsing table for your new grammar.

\[
L \rightarrow Ra \quad R \rightarrow aba \quad Q \rightarrow bca \\
L \rightarrow Qba \quad R \rightarrow caba \quad Q \rightarrow bc \\
R \rightarrow Rbc
\]

6. Construct the LR(1) parse table for the following grammar:

\[
S \rightarrow Aa \\
A \rightarrow BC \\
A \rightarrow BCf \\
B \rightarrow b \\
C \rightarrow c
\]

Is this grammar LR(1)?