Instructions: Read carefully through the whole exam first and plan your time. Note the relative weight of each question and part (as a percentage of the score for the whole exam). The total points is 100 (i.e., your grade will be the percentage of your answers that are correct).

This exam is **open book, open notes**. You are free to refer to any book or other study materials you bring to the exam room.

You have **120 minutes** to complete all four (4) questions. Write your answers on this paper (use both sides if necessary).

Name:

Student Number:

Signature
1. (Semantics and code generation; 20%): Recall that a Java while loop has the following syntax:

\[
\text{while (e) s}
\]

Expression \(e \) is a Boolean expression evaluated before each execution of the loop body. If \(e \) evaluates to false then execution continues with the statement following the loop, otherwise the body \(s \) is executed. Assume you are generating intermediate code trees from an abstract syntax tree as in the MiniJava project compiler. Exhibit a tuple-like template for the loop that has the minimum number of branches per iteration of the loop.

Describe how to support the \texttt{break} and \texttt{continue} statements in the context of your design, and in a way that will integrate with use of \texttt{break} and \texttt{continue} in other Java constructs (for loops, \texttt{switch} statements, \textit{etc}). In particular, indicate what should happen as you generate intermediate code for each of those other constructs. The \texttt{break} statement terminates execution of its immediately enclosing loop; it has a different meaning in \texttt{switch} statements, with which you should be familiar. The \texttt{continue} statement stops execution of the current loop iteration and continues with the next iteration of the loop; it is equivalent in meaning to branching to the end of the loop \textit{body} (in this case the end of \(s \)), but not outside the loop.

Answer:

The code template has the following form:

\[
\begin{align*}
\text{code for condition } e \\
\text{branch on false } L_{\text{break}} \\
L_{\text{body}} : \\
\text{code for body } s \\
L_{\text{continue}} : \\
\text{code for condition } e \\
\text{branch on true } L_{\text{body}} \\
L_{\text{break}} :
\end{align*}
\]

A \texttt{break} will generate a branch to \(L_{\text{break}} \) (outside the loop) and a \texttt{continue} will generate a branch to \(L_{\text{continue}} \) (to re-execute the body).

To handle \texttt{break} and \texttt{continue} more generally, we need to keep a stack of loop information. Before we process the body of a given loop (or \texttt{switch}), we push information for that loop, and after we process the body, we pop the information off. The information consists of the current \texttt{break} and \texttt{continue} labels. For example, in the above template, we would indicate \(L_{\text{break}} \) as the \texttt{break} label and \(L_{\text{continue}} \) as the \texttt{continue} label. Java \texttt{for} and \texttt{do} loops would push similar label information. The \texttt{switch} statement would set up a \texttt{break} label, since it has its own meaning for \texttt{break}, but it would use the \texttt{continue} label of the next outer loop (if any; we need a way of indicating that there is none, \textit{etc}).
2. (Domanators, SSA form; 20%) Consider the following control flow graph (CFG):
(a) (5%) Derive dominators for each basic block and draw the dominator tree for the CFG.

Answer:

\[
\begin{array}{c|c}
 n & \text{DOM}(n) \\
\hline
0 & \{0\} \\
1 & \{0,1\} \\
2 & \{0,1,2\} \\
3 & \{0,1,3\} \\
4 & \{0,1,3,4\} \\
5 & \{0,1,3,5\} \\
6 & \{0,1,3,6\} \\
7 & \{0,1,7\} \\
\end{array}
\]

(b) (5%) Derive the dominance frontier for each basic block in the CFG.

Answer:

\[
\begin{array}{c|c}
 n & \text{DF}(n) \\
\hline
0 & \{\} \\
1 & \{\} \\
2 & \{7\} \\
3 & \{7\} \\
4 & \{6\} \\
5 & \{6\} \\
6 & \{7\} \\
7 & \{1\} \\
\end{array}
\]
(c) (5%) Redraw the CFG in semi-pruned SSA form: *ie*, place φ nodes only for temporaries that are live across some basic block boundary.

Answer:
(d) (5%) Convert out of SSA form, redrawing the CFG with copies inserted to implement the effects of the ϕ-functions.

Answer:
3. (SSA-based loop optimizations; 35%) Consider the following Java method:

```java
void init(int[] a, int len, int x) {
    int i = 0;
    while (i < len) {
        a[i] = x * x;
        i = i + 1;
    }
}
```

The MiniJava compiler produces intermediate code for this program along the lines of:

```
i ← 0
if (i < len) goto L\text{body} else goto L\text{break}
L\text{body}:
j ← i * 4
p ← a_0 + j
*p ← x * x
i ← i + 1
if (i < len) goto L\text{body} else goto L\text{break}
L\text{break}:
```

where we use a C-like tuple syntax (eg, *p denotes the word of memory referred to by the address held in temporary p) and we omit null pointer and array bounds checks.

(a) (5%) Convert this intermediate code into semi-pruned SSA form: ie, place \(\phi \) nodes only for temporaries that are live across some basic block boundary.

Answer:

```
i_1 ← 0
if (i_1 < len_0) goto L_{body} else goto L_{break}
L_{body}:
i_2 ← \phi(i_1, i_3)
j ← i_2 * 4
p ← a_0 + j
*p ← x_0 * x_0
i_3 ← i_2 + 1
if (i_3 < len_0) goto L_{body} else goto L_{break}
L_{break}:
```
(b) (5%) Identify the induction variables and show the code (still in SSA form) that results after strength reduction.

Answer:

Insert a preheader for the loop in which to insert initialization statements for induction variables. The basic induction variable is i, j is in the family of i ($j = i \times 4$), and p is in the family of j ($p = a + j$). Thus, introduce j' to hold current value of $j = i \times 4$, p' to hold current value of $p = a + j'$.

First, j':

\[
i_1 \leftarrow 0
\]
\[
\text{if} \ (i_1 < \text{len}_0) \text{ goto } L_{\text{preheader}} \text{ else goto } L_{\text{break}}
\]

$L_{\text{preheader}}$:

\[
j'_1 \leftarrow i_1 \times 4
\]

L_{body}:

\[
i_2 \leftarrow \phi(i_1, i_3)
\]
\[
j'_2 \leftarrow \phi(j'_1, j'_3)
\]
\[
j \leftarrow j'_2
\]
\[
p \leftarrow a_0 + j
\]
\[
*p \leftarrow x_0 \times x_0
\]
\[
i_3 \leftarrow i_2 + 1
\]
\[
j'_3 \leftarrow j'_2 + 4
\]
\[
\text{if} \ (i_3 < \text{len}_0) \text{ goto } L_{\text{body}} \text{ else goto } L_{\text{break}}
\]

L_{break}:

Then p':

\[
i_1 \leftarrow 0
\]
\[
\text{if} \ (i_1 < \text{len}_0) \text{ goto } L_{\text{preheader}} \text{ else goto } L_{\text{break}}
\]

$L_{\text{preheader}}$:

\[
j'_1 \leftarrow i_1 \times 4
\]
\[
p'_1 \leftarrow a_0 + j'_1
\]

L_{body}:

\[
i_2 \leftarrow \phi(i_1, i_3)
\]
\[
j'_2 \leftarrow \phi(j'_1, j'_3)
\]
\[
p'_2 \leftarrow \phi(p'_1, p'_3)
\]
\[
j \leftarrow j'_2
\]
\[
p \leftarrow p'_2
\]
\[
*p \leftarrow x_0 \times x_0
\]
\[
i_3 \leftarrow i_2 + 1
\]
\[
j'_3 \leftarrow j'_2 + 4
\]
\[
p'_3 \leftarrow p'_2 + 4
\]
\[
\text{if} \ (i_3 < \text{len}_0) \text{ goto } L_{\text{body}} \text{ else goto } L_{\text{break}}
\]

L_{break}:
(c) (5%) Show the code (still in SSA form) that results after linear test replacement. Make sure you do this iteratively for each family of induction variables.

Answer:

First i:

\[
\begin{align*}
&i_1 \leftarrow 0 \\
&\text{if } (i_1 < \text{len}_0) \text{ goto } \text{L}_{\text{preheader}} \text{ else goto } \text{L}_{\text{break}} \\
\text{L}_{\text{preheader}} : \\
&j_1' \leftarrow i_1 \ast 4 \\
&p_1' \leftarrow a_0 + j_1' \\
\text{L}_{\text{body}} : \\
&i_2 \leftarrow \phi(i_1, i_3) \\
&j_2' \leftarrow \phi(j_1', j_3') \\
&p_2' \leftarrow \phi(p_1', p_3') \\
&j \leftarrow j_2' \\
&p \leftarrow p_2' \\
*&p \leftarrow x_0 \ast x_0 \\
&i_3 \leftarrow i_2 + 1 \\
&j_3' \leftarrow j_2' + 4 \\
&p_3' \leftarrow p_2' + 4 \\
&\text{if } (j_3' < \text{len}_0 \ast 4) \text{ goto } \text{L}_{\text{body}} \text{ else goto } \text{L}_{\text{break}} \\
\text{L}_{\text{break}} : \\
\end{align*}
\]

Then j:

\[
\begin{align*}
&i_1 \leftarrow 0 \\
&\text{if } (i_1 < \text{len}_0) \text{ goto } \text{L}_{\text{preheader}} \text{ else goto } \text{L}_{\text{break}} \\
\text{L}_{\text{preheader}} : \\
&j_1' \leftarrow i_1 \ast 4 \\
&p_1' \leftarrow a_0 + j_1' \\
\text{L}_{\text{body}} : \\
&i_2 \leftarrow \phi(i_1, i_3) \\
&j_2' \leftarrow \phi(j_1', j_3') \\
&p_2' \leftarrow \phi(p_1', p_3') \\
&j \leftarrow j_2' \\
&p \leftarrow p_2' \\
*&p \leftarrow x_0 \ast x_0 \\
&i_3 \leftarrow i_2 + 1 \\
&j_3' \leftarrow j_2' + 4 \\
&p_3' \leftarrow p_2' + 4 \\
&\text{if } (p_3' < a_0 + \text{len}_0 \ast 4) \text{ goto } \text{L}_{\text{body}} \text{ else goto } \text{L}_{\text{break}} \\
\text{L}_{\text{break}} : \\
\end{align*}
\]
(d) (5%) Show the code that results (still in SSA form) after copy-propagation/constant-propagation/constant-folding.

Answer:

\[
\begin{align*}
i_1 & \leftarrow 0 \\
\text{if } (0 < \text{len}_0) & \text{ goto } L_{\text{preheader}} \text{ else goto } L_{\text{break}} \\
L_{\text{preheader}} : \\
& j'_1 \leftarrow 0 \\
& p'_1 \leftarrow a \\
L_{\text{body}} : \\
i_2 & \leftarrow \phi(i_1, i_3) \\
j'_2 & \leftarrow \phi(j'_1, j'_3) \\
p'_2 & \leftarrow \phi(a, p'_3) \\
j & \leftarrow j'_2 \\
p & \leftarrow p'_2 \\
*p'_2 & \leftarrow x_0 \ast x_0 \\
i_3 & \leftarrow i_2 + 1 \\
j'_3 & \leftarrow j'_2 + 4 \\
p'_3 & \leftarrow p'_2 + 4 \\
\text{if } (p'_3 < a_0 + \text{len}_0 \ast 4) & \text{ goto } L_{\text{body}} \text{ else goto } L_{\text{break}} \\
L_{\text{break}} :
\end{align*}
\]

(e) (5%) Identify loop invariants and show the code (still in SSA form) that results after loop-invariant code motion.

Answer:

Loop invariants are \(x, \text{len}, a, x \ast x, a + \text{len} \ast 4 \).

\[
\begin{align*}
i_1 & \leftarrow 0 \\
\text{if } (0 < \text{len}_0) & \text{ goto } L_{\text{preheader}} \text{ else goto } L_{\text{break}} \\
L_{\text{preheader}} : \\
& j'_1 \leftarrow 0 \\
& p'_1 \leftarrow a \\
& c \leftarrow x_0 \ast x_0 \\
& k \leftarrow a_0 + \text{len}_0 \ast 4 \\
L_{\text{body}} : \\
i_2 & \leftarrow \phi(i_1, i_3) \\
j'_2 & \leftarrow \phi(j'_1, j'_3) \\
p'_2 & \leftarrow \phi(a, p'_3) \\
j & \leftarrow j'_2 \\
p & \leftarrow p'_2 \\
*p'_2 & \leftarrow c \\
i_3 & \leftarrow i_2 + 1 \\
j'_3 & \leftarrow j'_2 + 4 \\
p'_3 & \leftarrow p'_2 + 4 \\
\text{if } (p'_3 < k) & \text{ goto } L_{\text{body}} \text{ else goto } L_{\text{break}} \\
L_{\text{break}} :
\end{align*}
\]
(f) (5%) Show the code that results (still in SSA form) after dead variable elimination.

Answer:

```c
if (0 < len0) goto L_preheader else goto L_break

L_preheader :
    c ← x0 * x0
    k ← a0 + len0 * 4

L_body :
    p′_2 ← φ(a, p′_3)
    *p′_2 ← c
    p′_3 ← p′_2 + 4
    if (p′_3 < k) goto L_body else goto L_break

L_break :
```

(g) (5%) Convert out of SSA form and show the resulting code.

Answer:

Break critical edge on loop continue, by inserting a continue block in which to place copy statements.

```c
if (0 < len0) goto L_preheader else goto L_break

L_preheader :
    c ← x0 * x0
    k ← a0 + len0 * 4
    p′_2 ← a
    goto L_body

L_continue :
    p′_2 ← p′_3

L_body :
    *p′_2 ← c
    p′_3 ← p′_2 + 4
    if (p′_3 < k) goto L_continue else goto L_break

L_break :
```
4. (Global data-flow analysis; 25%) In performing lazy code motion (LCM) an optimizer must compute information about both availability and anticipability of expressions. As discussed in class, an expression is available at a given point in a program if recomputing it there is redundant. Availability provides LCM with information about moving evaluations later in the program. Anticipability is a related notion: an expression is anticipable at a given point in a program if it can safely be evaluated earlier in the program.

You may assume the program consists of a set of basic blocks N. Set up data flow equations to solve for anticipability, to produce solution sets $\text{AnticIn}(n)$ and $\text{AnticOut}(n)$ for each node $n \in N$, specifically answering these questions:

(a) (2%) Is the problem forward-flow or backward-flow?

Answer:
Backward-flow

(b) (2%) Is the problem any-path or all-paths?

Answer:
All paths

(c) (4%) What are the flow values (you may assume the program consists of a set of blocks N)?

Answer:
The (value-numbered) expressions anticipated on entry to $n \in N$: evaluating the expression at the beginning of n has the same effect as evaluating it at its original position.
Define:
$$\text{UEExpr}(b) = \text{the set of upward-exposed expressions } e \text{ in block } b.$$ If $e \in \text{UEExpr}(b)$, evaluating e at the entry to block b produces the same value as evaluating it in its original position.
$$\text{ExprKill}(b) = \text{the set of expressions } e \text{ that are killed in block } b.$$ If $e \in \text{ExprKill}(b)$ then b contains a redefinition of one or more operands of e.
As a consequence, evaluating e at the entry to b may produce a different value than evaluating it at the end of b.

(d) (2%) Which is the boundary node $n_0 \in N$ (ie, Entry or Exit)?

Answer:

$$n_0 = \text{Exit}$$

(e) (5%) What are the boundary conditions (ie, the initial values $\text{AnticIn}(n_0)$ and $\text{AnticOut}(n_0)$ for the boundary node)?

Answer:

$$\text{AnticOut}(\text{Exit}) = \{\}$$
$$\text{AnticIn}(\text{Exit}) = \{\text{all (value-numbered) expressions}\}$$

(f) (5%) State initial values of AnticIn and AnticOut for interior nodes (ie, $n \in N, n \neq n_0$)

Answer:
\[\text{AnticOut}(n) = \text{AnticIn}(n) = \{ \text{all (value-numbered) expressions} \} \]

(g) (5%) Give flow equations for AnticIn(n) and AnticOut(n)

Answer:

\[
\begin{align*}
\text{AnticOut}(n) &= \bigcap_{s \in S(n)} \text{AnticIn}(s) \\
\text{AnticIn}(n) &= \text{UEExpr}(n) \cup (\text{AnticOut}(n) \cap \text{ExprKill}(n))
\end{align*}
\]