
Tips for Computer Scientists
on

Standard ML (Revised)

Mads Tofte

August 30, 2009

This document and all examples in it are available from http://www.itu.dk/people/tofte

http://www.itu.dk/people/tofte

Preface
This note is inspired by a brilliant piece of writ-
ing, entitled Tips for Danes on Punctuation in
English, by John Dienhart, Department of En-
glish, Odense University (1980). In a mere 11
pages, Dienhart’s lucid writing gives the reader
the impression that punctuation in English is
pretty easy and that any Dane can get it right
in an afternoon or so.

In the same spirit, this note is written for col-
leagues and mature students who would like to
get to know Standard ML without spending too
much time on it. It is intended to be a relaxed
stroll through the structure of Standard ML, with
plenty of small examples, without falling into
the trap of being just a phrase book.

I present enough of the grammar that the
reader can start programming in Standard ML,
should the urge arise.

The full grammar and a formal definition of
the semantics can be found in the 1997 language
definition[2]. Some of the existing textbooks
also contain a BNF for the language, e.g., [3].
I have tried to use the same terminology and no-
tation as the language definition, for ease of ref-
erence.

Contents

1 Numbers 1
2 Overloaded Arithmetic Operators 1
3 Strings 1
4 Lists 1
5 Expressions 1
6 Declarations 1
7 Function Values 2
8 Constructed Values 3
9 Patterns 4

10 Pattern Matching 5
11 Function-value Bindings (revisited) 6
12 Function Application 6
13 Type Expressions 7
14 Type Abbreviations 7
15 Datatype Declarations 7
16 Exceptions 8
17 References 9
18 Procedures 10
19 Input and Output 10
20 The top-level loop 11
21 Modules 11
22 Structures 11
23 Signatures 12
24 Structure Matching 13
25 Transparent Signature Constraints 13
26 Transparent Signature Constraints 14
27 Structures as Modules 15
28 Functors 17
29 Programs 20
30 Further Reading 20

The Core Language 1

1 Numbers
Standard ML has two types of numbers: integers
(int) and reals (real).

Example 1.1 These are integer constants: 5, 0,
˜37 ut

Example 1.2 These are real constants: 0.7,
3.1415, ˜3.32E˜7 ut

2 Overloaded Arithmetic Op-
erators

Each of the binary operators +, *, -, <, >, <=
and >= can be applied either to a pair of integers
or to a pair of reals. The function real coerces
from int to real. Any value produced by +,
* or - is of the same type as the arguments.

Example 2.1 The expression 2+3 has type int
and the expression 2.0+real(5) has type
real. ut

It is sometimes necessary to impose a type
constraint “:int” or “:real” to disambiguate
overloaded operators.

Example 2.2 The squaring function on integers
can be declared by

fun square(x:int) = x*x

or, equivalently, by

fun square(x) = (x:int) * x

ut

Unary minus (˜) either maps an integer to an
integer or a real to a real.

3 Strings
String constants are written like this:
"hello world". There is special syntax for
putting line breaks, tabs and other control char-
acters inside string constants. The empty string
is "".

4 Lists
All elements of a list must have the same type,
but different lists can contain elements of differ-
ent types.

Example 4.1 These are lists: [2, 3, 5],
["ape", "man"]. ut

The empty list is written [] or nil.
The operation for adding an element to the
front (i.e., the left) of a list is the right-
associative, infix operator :: , pronounced
“cons.” Hence, the expression [2, 3, 5] is
short for 2::3::5::nil.

5 Expressions
Expressions denote values. The preceding sec-
tions gave examples of constant expressions,
function application expressions and list expres-
sions. Other forms will be introduced below. We
use exp to range over expressions.

6 Declarations
Standard ML has a wide variety of declarations,
e.g., value declarations, type declarations and
exception declarations. Common to them all is
that a declaration binds identifiers. We use dec
to range over declarations.

A common form of expression is

let dec in exp end

2 The Core Language

which makes the bindings produced by dec
available locally within the expression exp.

Example 6.1 The expression

let val pi = 3.1415
in pi * pi
end

is equivalent to 3.1415 * 3.1415. ut

Value Bindings
Value declarations bind values to value identi-
fiers. A common form of value declaration is

val vid = exp

We use vid to range over value identifiers. Dec-
larations can be sequenced (with or without
semicolons); furthermore, a declaration can be
made local to another declaration.

Example 6.2

val x = 3

Example 6.3

val x = 3
val y = x+x

Example 6.4

local
val x = 3;
val y = 5

in
val z = x+y

end

In a sequential declaration dec1dec2 (or
dec1;dec2), the declaration dec2 may refer to
bindings made by dec1, in addition to the bind-
ings already in force. Declarations are (as all

phrases are) evaluated left-to-right. Later decla-
rations can shadow over earlier declarations, but
they cannot undo them.

Example 6.5

val x = 3
val y = x
val x = 4

At the end of the above declaration, x is bound
to 4 and y is bound to 3. ut

Function-value Bindings
Function-value bindings bind functions (which
are values in Standard ML) to value identifiers.
A common form is

fun vid(vid1) = exp

where vid is the name of the function, vid1 is
the formal parameter and exp is the function
body. Parentheses can often be omitted. When
in doubt, put them in.

Example 6.6

fun fac(n) =
if n=0 then 1
else n*fac(n-1)

val x = fac(5) (* or fac 5,
if one prefers *)

By the way, note that comments are enclosed
between (* and *); comments may be nested,
which makes it possible to comment out large
program fragments. ut

7 Function Values
The expression fn vid => exp denotes the
function with formal parameter vid and body
exp. The fn is pronounced “lambda”.

The Core Language 3

Function-value bindings allow convenient
syntax for Curried functions. Hence

fun f x y = (x+y):int

is short for

val f = fn x=>fn y=>(x+y):int

No legal function-value binding begins
fun vid = . If one wants to bind a
function value to an identifier, vid , without
introducing formal parameters, one can write
val vid = exp .

Infix identifiers denoting functions are some-
times called infix operators (for example in the
case of +). When an infix operator is to be re-
garded as a function by itself, precede it by the
keyword op.

Example 7.1 The expression

map op + [(1,2),(2,3),(4,5)]

evaluates to the list [3, 5, 9]. ut

Standard ML is statically scoped. In partic-
ular, the values of any free value identifiers a
function value may have are determined when
the function value is created, not when the func-
tion is applied.

Example 7.2 Assume we have already declared
a function lengthwhich, when applied to a list
l, returns the length of l. Then the declarations
below bind y to 18.

local val l = 15
in

fun f(r) = l + r
end;
val y =

let val l = [7,9,12]
in f(length l)
end

The two bindings involving value identifier l
have nothing with to do with each other. ut

8 Constructed Values

Standard ML has several ways of constructing
values out of existing values. One way is record
formation, which includes pairing and tupling.
Another way is application of a value construc-
tor (such as ::). The characteristic property of
a constructed value is that it contains the val-
ues out of which it is built. For example (3,5)
evaluates to the pair (3, 5) which contains 3 and
5; by contrast, 3+5 evaluates to 8, which is not
a constructed value.

Pairing and Tupling

Expressions for constructing pairs and tuples are
written as in Mathematics. Examples: (2,3),
(x,y), (x, 3+y, "ape") . The function
#i (i ≥ 1) can be applied to any pair or tuple
which has at least i elements; it returns the i’th
element.

Records

Record expressions take the form

{lab1=exp1,···,labn=expn} (n ≥ 0)

We use lab to range over record labels.

Example 8.1

{make = "Ford", built = 1904}

ut
Record expressions are evaluated left-to-right;
apart from that, the order of the fields in the
record expression does not matter.

When lab is a label, #lab is the function
which selects the value associated with lab from
a record.

Pairs and tuples are special records, whose la-
bels are 1, 2 etc.

4 The Core Language

The type unit

There is a built-in type, unit, which is an alias
for the tuple type {}. This type contains just one
element, namely the 0-tuple {}, which is also
written (). With a slight abuse of terminology,
this one value is often pronounced “unit”.

Datatype Constructors

Applying a datatype constructor con to a value v
constructs a new value, which can be thought of
as the value v fused with the “tag” con. (Nullary
datatype constructors can be thought of as stand-
ing for just a tag.)

Example 8.2 The expression [1] is short for 1
:: nil, which in turn means the same thing
as op ::(1, nil). In principle, the evalua-
tion of [1] creates four values, namely 1, nil,
the pair (1,nil) and the value :: (1,nil). ut

9 Patterns

For every way of constructing values (see
Sec. 8) there is a way of decomposing values.
The phrase form for decomposition is the pat-
tern. A pattern commonly occurs in a value
binding or in a function-value binding:

val pat = exp
fun vid(pat) = exp

We use pat to range over patterns. A value iden-
tifier can be used as a pattern.

Example 9.1

val x = 3;
fun f(y) = x+y

Patterns for Pairs and Tuples

Example 9.2

val pair = (3,4)
val (x,y) = pair
val z = x+y

Here we have a pair pattern, namely (x,y). ut

Example 9.3 Here is an example of a function-
value binding which uses a tuple pattern.

val mycar = {make = "Ford",
built = 1904}

fun evolve{make = m,
built = year}=

{make = m ,
built = year+1}

In the above tuple pattern, make and built
are labels, whereas m and year are value iden-
tifiers. The same holds true of the tuple-building
expressions in the example. ut

There is no convenient syntax for producing
from a record r a new record r′ which only dif-
fers from r at one label. However, there is syn-
tax for the implicit introduction of a value iden-
tifiers with the same name as a label: in a record
pattern, lab = vid can be abbreviated lab, if
vid and lab are the same identifier.

Example 9.4 The evolve function could have
been declared by just:

fun evolve{make, built} =
{make = make,
built = built+1}

ut
The wildcard record pattern, written ... , can
be used to extract a selection of fields from a
record:

The Core Language 5

val {make, built, ...} =
{built = 1904,
colour = "black",
make = "Ford"}

The empty tuple {} (or ()) can be used in pat-
terns.

Example 9.5 This is the function, which when
applied to unit returns the constant 1:

fun one() = 1

Constructed Patterns

The syntax for patterns with value constructors
resembles that of function application.

Example 9.6

val mylist = [1,2,3]
val first::rest = mylist

Here first will be bound to 1 and
rest to [2,3]. Incidentally, the pattern
[first,rest] would be matched by lists of
length 2 only. ut

The Wildcard Pattern

The wildcard pattern, written _ , matches any
value. It relieves one from having to invent an
identifier for a value in a pattern, when no iden-
tifier is needed.

Constants in Patterns

Constants of type int, real and string are
also allowed in patterns. So are nullary value
constructors (such as nil).

10 Pattern Matching
A match rule takes the form

pat => exp

Matching a value v against pat will either suc-
ceed or fail. If it succeeds, the match rule binds
any value identifier of pat to the correspond-
ing value components of v. Then exp is eval-
uated, using these new bindings (in addition to
the bindings already in force). We use mrule to
range over match rules.

A match takes the form

mrule1 | ··· | mrulen (n ≥ 1)

One can apply a match to a value, v. This is
done as follows. Searching from left to right,
one looks for the first match rule whose pat-
tern matches v. If one is found, the other match
rules are ignored and the match rule is evalu-
ated, as described above. If none is found, the
match raises exception Match. Most compil-
ers produce code which performs the search for
a matching match rule very effectively in most
cases.

Two common forms of expression that con-
tain matches are the case expression and the
function expression:

case exp of match
fn match

In both cases, the compiler will check that the
match is exhaustive and irredundant. By exhaus-
tive is meant that every value of the right type is
matched by some match rule; by irredundant is
meant that every match rule can be selected, for
some value.

Example 10.1

fun length l =
case l of

[] => 0
| _ ::rest=>1+length rest

6 The Core Language

This function also illustrates a use of the wild-
card pattern. ut

11 Function-value Bindings
(revisited)

A common form of function-value binding is:

fun vid pat1 = exp1

| vid pat2 = exp2

···
| vid patn = expn

Example 11.1 The length function can also be
written thus

fun length [] = 0
| length (_::rest) =

1 + length rest

ut
Notice that this form of value binding uses =
where the match used =>. The above form gen-
eralises to the case where vid is a Curried func-
tion of m arguments (m ≥ 2); in this case vid
must be followed by exactly m patterns in each
of the n clauses.

The reserved word and in connection with
function-value bindings achieves mutual recur-
sion:

Example 11.2

fun even 0 = true
| even n = odd(n-1)

and odd 0 = false
| odd n = even(n-1)

ut

Layered Patterns
A useful form of pattern is

vid as pat

which is called a layered pattern. A value v
matches this pattern precisely if it matches pat;
when this is the case, the matching yields a bind-
ing of vid to v in addition to any bindings which
pat may produce.

Example 11.3 A finite map f can be repre-
sented by an association list, i.e., a list of pairs
(d, r), where d belongs to the domain of f and r
is the value of f at d. The function below takes
arguments f , d and r and produces the represen-
ation of a map f ′ which coincides with f except
that f ′(d) = r.

fun update f d r =
case f of

[] => [(d,r)]
| ((p as (d’,_)):: rest)=>

if d=d’ then (d,r)::rest
else p::update rest d r

ut

12 Function Application
Standard ML is call-by-value (or “strict”, as it
is sometimes called). The evaluation of an ap-
plication expression exp1 exp2 proceeds as fol-
lows. Assume exp1 evaluates to value v1 and
that exp2 evaluates to value v2. Now v1 can take
different forms. If v1 is a value constructor, then
the constructed value obtained by tagging v2 by
v1 is produced. Otherwise, if v1 is a function
value fn match then match is applied to v2,
bearing in mind that the values of any free value
identifiers of match were determined when the
function value was first created; if this evalua-
tion yields value v then v is the result of the ap-
plication.

The Core Language 7

13 Type Expressions

The identifiers by which one refers to types are
called type constructors. Type constructors can
be nullary (such as int or string) or they can
take one or more type arguments. An example
of the latter is the type constructor list, which
takes one type argument, namely the type of the
list elements. Application of a type constructor
to an argument is written postfix. For example

int list

is the type of integer lists. We use tycon to range
over type constructors.

Type variables start with a prime (e.g. ’a,
which sometimes is pronounced “alpha”).

Other type constructors are * (product) and
-> (function space). Here * binds more tightly
than -> and -> associates to the right. Also,
there are record types.

Example 13.1 Here are some of the value iden-
tifiers introduced in the previous sections to-
gether with their types:

x: int
fac: int -> int
f: int -> int -> int
mycar:

{make: string, built: int}
evolve:

{make: ’a, built: int}->
{make: ’a, built: int}

mylist: int list
length: ’a list -> int
+ : int * int -> int

Here length is an example of a polymorphic
function, i.e., a function which can be applied to
many types of arguments (in this case: all lists).
We use ty to range over type expressions.

14 Type Abbreviations
A type declaration declares a type construc-
tor to be an abbreviation for a type. A common
form is

type tycon = ty

The type declaration does not declare a new
type. Rather, it establishes a binding between
tycon and the type denoted by ty .

Example 14.1 Here is a type abbreviation

type car = {make: string,
built: int}

In the scope of this declaration, the type
of mycar (Sec. 9) can be written simply
car and the evolve function has type
car -> car . ut

15 Datatype Declarations
A datatype declaration binds type constructors
to new types. It also introduces value con-
structors. If one wants to declare one new
type, called tycon, with n value constructors
con1, . . . , conn, one can write

datatype tycon = con1 of ty1

| con2 of ty2

···
| conn of tyn

The “of ty i” is omitted when con i is nullary.
Nullary value constructors are also called con-
stants (of type tycon). The above declaration
binds tycon to a type structure. The type struc-
ture consists of a type name, t, and a value en-
vironment. The type name is a stamp which dis-
tinguishes this datatype from all other datatypes.
The value environment maps every con i, which,
formally, is just a value identifier, to its type.
This type is is simply t, if con i is a constant,

8 The Core Language

and τi → t, if con i is not a constant and τi is the
type denoted by ty i.

Moreover, the datatype declaration gives con i

constructor status.

Example 15.1

datatype colour =
BLACK

| WHITE

Many ML programmers capitalize value con-
structors, to make it easy to distinguish them
from other value identifiers. However, the
built-in constructors true, false and nil
are all lower case. ut

Datatypes are recursive by default. There is
additional syntax for dealing with mutually re-
cursive datatypes (and), datatypes that take one
or more type arguments and type abbreviations
inside datatype declarations (withtype).

Example 15.2 The built-in list datatype cor-
responds to this declaration:

infixr 5 ::
datatype ’a list =

nil
| op :: of ’a * ’a list

The directive infixr 5 :: declares the
identifier :: to have infix status and precedence
level 5. Precedence levels vary between 0 and
9. There is also a directive infix for declaring
left-associative infix status and a directive
nonfix id, for cancelling the infix status of
identifier id. ut

16 Exceptions
There is a type called exn, whose values are
called exception values. This type resembles a

datatype, but, unlike datatypes, new construc-
tors can be added to exn at will. These con-
structors are called exception constructors. We
use excon to range over exception constructors.
Formally, exception constructors are value iden-
tifiers. Many ML programmers capitalize ex-
ception constructors, to make it easy to distin-
guish them from other value identifiers.

A new exception constructor is generated by
the declaration

exception excon

in case the exception constructor is nullary (an
exception constant), and by

exception excon of ty

otherwise.
Most of what has been said previously about

value constructors applies to exception con-
structors as well. In particular, one can construct
a value by applying an exception constructor to
a value and one can do pattern matching on ex-
ception constructors.

Example 16.1 The following declarations de-
clare two exception constructors

exception NoSuchPerson
exception BadLastName of string

Examples of exception values are:
NoSuchPerson,
BadLastName("Wombat"). ut

An exception value can be raised with the aid
of the expression

raise exp

which is evaluated as follows: if exp evaluates to
an exception value v then an exception packet,
written [v], is formed, the current evaluation is
aborted and the search for a handler which can
handle [v] is begun.

The Core Language 9

A handler can be thought of a function which
takes arguments of type exn. (Different handler
functions can have different result types.) Han-
dlers are installed by handle expressions, which
are described below, not by using some form of
function declaration.

Exception handlers can only be applied by
evaluating a raise expression, for it is the raise
expression that supplies the argument to the ap-
plication. Moreover, evaluation does not return
to the raise expression after the application is
complete. Rather, evaluation resumes as though
the handler had been applied like a normal func-
tion at the place it was installed.

Exception handlers are installed by the ex-
pression

exp handle match (1)

Assume that, at the point in time where (1) is to
be evaluated, handlers h1, . . . , hn have already
been installed. Think of this sequence as a stack,
with hn being the top of the stack. First we push
the new handler hn+1 = fn match onto the
stack. Then we evaluate exp. If exp produces
a value v then hn+1 is removed from the stack
and v becomes the value of (1). But if exp pro-
duces an exception packet [v], then the following
happens. If v matches one of the match rules in
match then hn+1 is removed and the result of
(1) is the same as if we had applied fn match
to v directly. But if v does not match any match
rule in match, then hn+1 and other handlers are
popped from the stack in search for an applica-
ble handler. If one is found, evaluation resumes
as though we were in the middle of an applica-
tion of the handler function to argument v at the
point where the matching handler was installed.

If no handler is applicable, the exception
packet will abort the whole evaluation, often re-
ported to the user as an “uncaught exception”.

Example 16.2 In the scope of the previous ex-
ception declarations, we can continue

fun findFred [] =
raise NoSuchPerson

| findFred (p::ps) =
case p of

{name = "Fred",
location} => location

| _ => findFred ps

fun someFredWorking(staff)=
(case findFred(staff) of

"office" => true
| "conference" => true
| _ => false
)handle NoSuchPerson => false

ut
In the handle expression (1) all the expressions
on the right-hand-sides of the match rules of
match must have the same type as exp itself.

Corresponding to the built-in operators (for
example the operations on numbers) there are
built-in exceptions which are raised in vari-
ous abnormal circumstances, such as overflow
and division by zero. These exceptions can be
caught by the ML program (if the ML program-
mer is careful enough to catch such stray ex-
ceptions) so that computation can resume grace-
fully.

17 References
Standard ML has updatable references (point-
ers). The function ref takes as argument a
value and creates a reference to that value. The
function ! takes as argument a reference r and
returns the value which r points to. Dangling
pointers cannot arise in Standard ML. Pointers
can be tested for equality. ref is also a unary
type constructor: ty ref is the type of refer-
ences to values of type ty . Assignment is done
with the infix operator :=, which has type:

τ ref ∗ τ → unit

10 The Core Language

for all types τ . Programs that use side-effects
also often use the two phrase forms

let dec in exp1 ; ··· ; expn end
(exp1 ; ··· ; expn)

where n ≥ 2. In both cases, the n expres-
sions are evaluated from left-to-right, the value
of the whole expression being the value of expn

(if any).

Example 17.1 The following expression cre-
ates a reference to 0, increments the value it
references twice and returns the pointer itself
(which now points to 2):

let val r = ref(0)
in r:= !r + 1;

r:= !r + 1;
r

end

ut

Example 17.2 The following function produces
a fresh integer each time it is called:

local
val own = ref 0

in
fun fresh_int() =
(own:= !own + 1;
!own
)

end

ut
It is possible to use references in polymorphic
functions, although certain restrictions apply.

18 Procedures
Standard ML has no special concept of pro-
cedure. However, a function with result type
unit can often be regarded as a procedure and

a function with domain type unit can often be
regarded as a parameterless procedure or func-
tion.

Example 18.1 Function P below has type
int ref * int -> unit.

val i = ref 0;
fun P(r,v)=

(i:= v;
r:= v+1
)

19 Input and Output
In Standard ML a stream is a (possibly infi-
nite) sequence of characters through which the
running ML program can interact with the sur-
rounding world. There are primitives for open-
ing and closing streams. There are two types of
streams, instream and outstream, for in-
put and output, respectively. There is a built-in
instream, TextIO.stdIn, and a built-in out-
stream, TextIO.stdOut. In an interactive
session they both refer to the terminal. There
are functions for opening and closing streams.

Example 19.1 The built-in function

TextIO.output:
outstream*string->unit

is used for writing strings on an outstream. In-
side strings \n is the ASCII newline character
and \t is the ASCII tab character. Long strings
are broken across lines by pairs of \ . Finally, ˆ
is string concatenation.

fun displayCountry(country,cap)=
TextIO.output(TextIO.stdOut,

"\n" ˆ country
ˆ "\t" ˆ cap)

fun displayCountries L =
(TextIO.output(TextIO.stdOut,

"\nCountries\

Modules 11

\ and their capitals:\n\n");
map displayCountry L;
TextIO.output(TextIO.stdOut,

"\n\n")
)

The built-in function

TextIO.inputLine:
instream->string

is used for reading a line of text terminated by
newline character (or by the end of the stream).

val _ =
TextIO.output(TextIO.stdOut,

"Type a line:\n");

val myLine =
TextIO.inputLine TextIO.stdIn

ut
Streams are values. In particular, they can be
bound to value identifiers and stored in data
structures. The functions input, output and
the other input/output related functions raise the
built-in exception Io when for some reason
they are unable to complete their task.

20 The top-level loop
As a novice Standard ML programmer, one
does not have to use input/output operations, for
Standard ML is an interactive language. The
method of starting an ML session depends on
the operating system and installation you use.
(From a UNIX shell, the command sml or
mosml might do the trick.) Once inside the ML
system, you can type an expression or a declara-
tion terminated by a semicolon and the ML sys-
tem will respond either with an error message
or with some information indicating that it has
successfully compiled and executed you input.
You then repeat this loop till you want to leave

the system. The system remembers declarations
made earlier in the session. If you are unfamiliar
with typed programming, you are likely to dis-
cover that once your programs get through the
type checker, they usually work!

The way to leave the ML system varies, but
typing ˆD (control-D) on a UNIX installation
usually gets the job done. Similarly, typing ˆI
interrups the ongoing compilation or execution.

Most ML systems provide facilities that let
you include source programs from a file, com-
pile files separately (for example a make sys-
tem), preserve an entire ML session in a file or
create a stand-alone application.

21 Modules

All constructs described so far belong to the
Core language. In addition to the Core, Stan-
dard ML has modules, for writing big programs.
Small programs have a tendency to grow, so one
might as well program with modules from the
beginning.

In Standard ML, the basic form of module is
called a structure. A signature is a “structure
type”. Finally, a functor is a parameterised mod-
ule.

22 Structures

In its most basic form, a structure encapsulates
a Core declaration of values, types and excep-
tions.

A structure can be declared thus:

structure strid = strexp (2)

We use strid to range over structure identifiers.
Moreover, we use strexp to range over structure
expressions. A structure expression denotes a

12 Modules

structure. One common form of structure ex-
pression is

struct strdec end (3)

which is called the basic structure expression.
Here strdec ranges over structure-level declara-
tions, i.e. the declarations that can be made at
structure level. A structure-level declaration can
be simply a Core declaration dec.

A long identifier takes the form

strid1.···.stridk.id (k ≥ 1) (4)

and refers to component id inside a structure,
strid1.

Example 22.1 The following declaration gener-
ates a structure and binds it to the structure iden-
tifier Year.

structure Year =
struct

type year = int
fun next(y:year)= y+1
fun toString(y)=

Int.toString(y)
end

Here Int.toString is a long value identifier.
It refers to the toString function in the struc-
ture Int. This structure is part of the Standard
ML Basis Library[1]. The toString function
converts an integer to its string representation. ut

A structure-level declaration can also declare
a structure. Thus it is possible to declare struc-
tures inside structures. That is why k can be
greater than 1 in (4). The inner structures are
said to be (proper) substructures of the outer
structure.

23 Signatures
A signature specifies a class of structures. It
does so by specifying types, values and sub-

structures, each of them with a description.
Some common forms of specifications are:

type tycon (5)
eqtype tycon (6)
type tycon=ty (7)
datatype datdesc (8)
val vid:ty (9)
structure strid:sigexp (10)
spec1;spec2 (11)

We use spec to range over specifications. The
form (11) allows for sequencing of specifica-
tions. (The semicolon is optional.) A specifi-
cation of the form (5) specifies the type tycon,
without saying what the type is.

A specification of the form (6) specifies the
type tycon without saying what the type is, ex-
cept that it must be a type that admits equality.
Values can only be tested for equality if their
types admit equality. Function types do not ad-
mit equality.

Finally, the specification (7) specifies the type
tycon and introduces it as an abbreviation for
the type ty .

Example 23.1 The specification

type year

specifies a type year without saying what the
type is, whereas the specification

type year=int

specifies a type year and introduces it as an ab-
breviation for int. ut
There are also type descriptions for types that
take one or more type parameters.

A datatype specification (8) looks almost
the same as a datatype declaration. However,
a datatype declaration generates a particular
type with certain constructors of certain types,
whereas a datatype specification specifies the

Modules 13

class of all datatypes that have the specified con-
structors. Thus two datatypes can be different
and still match the same datatype specification.

A value specification (9) specifies a value
identifier together with its type.

Signatures are denoted by signature expres-
sions. We use sigexp to range over signature
expressions. A common form of signature ex-
pression is the basic signature expression:

sig spec end

It is possible to bind a signature by a signature
identifier using a signature declaration of the
form

signature sigid = sigexp

We use sigid to range over signature identifiers.

Example 23.2 The following signature declara-
tion binds a signature to the signature identifier
YR:

signature YR =
sig

type year
val next: year-> year
val toString: year -> string

end;

ut
No specification starts with fun, for functions
are just values of functional type and can thus
be specified using val.

24 Structure Matching
Analogous to the notion that a value can have a
type, a structure can match a signature.

For a structure S to match a signature Σ, it
must be the case that every component speci-
fied in Σ is matched by a component in S. The
structure S may declare more components than
Σ specifies.

Example 24.1 The structure Year matches the
signature YR. ut

Matching of value components is dependent
on matching of type components.

Example 24.2 Consider

structure Year’ =
struct

type year = string
fun next(y)=y+1
fun toString(y) =

Int.toString(y)
end;

Here Year’ does not match YR, for
Year’.next would have to be of type
string -> string (since Year’.year
is bound to string). ut

25 Transparent Signature
Constraints

Transparent signature constraints are used for
hiding components of a structure, typically be-
cause the extra components are details of im-
plementation that one wishes to keep inside the
structure.

A structure-level declaration can take the
form

structure strid:sigexp = strexp (12)

This form of signature ascription to a structure,
recognizable by the use of the colon (:), is
called a transparent signature constraint. Sup-
pose strexp denotes structure S and sigexp de-
notes signature Σ. Then the above declaration
checks whether S matches Σ; if so, the declara-
tion creates a restricted view S ′ of S and binds
S ′ to strid . The restricted view S ′ will only have

14 Modules

the components that Σ specified. The type infor-
mation of the components of S ′ will be as spec-
ified in Σ, but the constraint will not hide the
identity of the types carried over from S, which
is why the constraint is said to be transparent.

Example 25.1 Consider

structure Year1: YR =
struct

type year = int
fun next(y:year)= y+1
fun toString(y) =

Int.toString(y)
end

val s = Year1.toString 1900;

Here Year1 matches YR. Because the signa-
ture constraint is transparent, the fact that years
are integers is not hidden by the constraint, so
the subsequent declaration of s is legal. ut

26 Opaque Signature Con-
straints

Opaque signature constraints are used for hid-
ing components of a structure and the identity
of types of that structure, typically because the
extra components and the identity of the types
are details of implementation that one wishes to
keep inside the structure.

An opaque signature constraint, distinguish-
able from the transparent signature constraint by
the use of the keyword :> , can be used in a
structure declaration:

structure strid:>sigexp = strexp

The resulting structure has only the components
specified by the signature. Moreover, the only
information about the identity of the types of the

constrained structure is that which is specified in
the signature.

Example 26.1 Consider

structure Year2:> YR =
struct

type year = int
fun next(y:year)= y+1
fun toString(y) =

Int.toString(y)
end

(* does not typecheck: *)
val s = Year2.toString 1900;

The above opaque signature constraint is legal,
but it makes the type Year2.year different
from int. Therefore, the declaration of s does
not typecheck. Indeed, Year2 is so well encap-
sulated that there is no way of creating a value of
type Year2.year. So let us introduce a func-
tion which can create years out of integers:

signature YEAR =
sig

eqtype year
val ad: int->year
val next: year-> year
val toString: year -> string

end

structure Year:> YEAR =
struct

type year = int
fun next(y:year)= y+1
fun ad i = i
fun toString(y) =

Int.toString(y)
end

val s = Year.toString(
Year.ad 1900)

The signature YEAR specifies year using
eqtype, so that using YEAR in an opaque

Modules 15

constraint does not remove the ability to test
values of type year for equality. Moreover,
YEAR specifies a function ad for creating years
from integers. As it happens, Year.ad is the
identity function, but having it is useful, because
it makes explicit which integer constants in the
program are actually year constants. ut

27 Structures as Modules
A popular style of modular programming in
Standard ML is the following: take a “module”
to be a declaration of a signature, followed by
a structure declaration which uses the signature
in a opaque signature constraint. The signature
then serves an the “interface” to the module.

Example 27.1 Here is a module which imple-
ments a structure, Ford, using the Year struc-
ture defined in Example 26.1, giving Ford an
interface called MANUFACTURER:

signature MANUFACTURER =
sig

type year
type car
val first: car
val built: car -> year
val evolve: car -> car
val toString: car -> string

end;

structure Ford:> MANUFACTURER =
struct

type year = Year.year
type car = {make: string,

built: Year.year,
price: real}

fun built(c:car) = #built c
val first =

{make = "Ford Model A",
built= Year.ad 1903,

price = 750.0} (*USD*)
(* assume 4 % inflation

per year: *)
val yr_inflation = 1.04
fun evolve(c:car)=

{make= #make c,
built= Year.next(built c),
price= yr_inflation

* #price c}
fun toString(c)=

#make c ˆ
" USD " ˆ
Int.toString(

Real.floor(#price c))
end;

Here MANUFACTURER specifies a type car,
without revealing what the type is. It also spec-
ifies a type year, in order to specify the type
of built. The structure implements cars as
triples consisting of the name of the car, the year
it was built, and the price of the car. Function
evolve takes a car as argument and returns a
car which is one year younger and 4 % more ex-
pensive. Note the long identifiers Year.year,
Year.ad and Year.next, which show that
the Ford structure depends on the Year struc-
ture. ut
This style of programming sometimes requires
that one reveals more information about the
types of the constained structure than a com-
pletely opaque signature constraint does.

Example 27.2 Consider what happens if we,
subsequent to the declaration of Ford, try the
following:

val s = Year.toString(
Ford.built Ford.first)

This will not type check, because the opaque
signature constraint on the declaration of Ford
made type Ford.year different from type
Year.year. ut
Fortunately, there are several ways in which

16 Modules

one can make signature constraints less opaque
without making them completely transparent.

One solution is to use a type abbreviation (7)
in the signature.

Example 27.3 Below we have inserted a type
abbreviation in the signature and renamed it,
to avoid confusion between the two signatures.
Nothing else has changed.

signature MANUFACTURER’ =
sig

type year = Year.year
type car
val first: car
val built: car -> year
val evolve: car -> car
val toString: car -> string

end;

structure Ford:> MANUFACTURER’ =
struct

type year = Year.year
type car={make: string,

built: Year.year,
price: real}

fun built(c:car) = #built c
val first =

{make = "Ford Model A",
built= Year.ad 1903,
price = 750.0} (*USD*)

(* assume 4 % inflation
per year: *)

val yr_inflation = 1.04
fun evolve(c:car)=

{make= #make c,
built= Year.next(built c),
price= yr_inflation

* #price c}
fun toString(c)=

#make c ˆ
" USD " ˆ
Int.toString(

Real.floor(#price c))

end;

val s= Year.toString(
Ford.built Ford.first)

Now the program typechecks. ut

Type Realisations
Another way of making signatures less opaque
is to use a type realisation:

sigexp where type longtycon = ty

The long indicates that we can use a long type
constructor — see Sec. 22. This form of sig-
nature expression supplements the basic signa-
ture expression introduced in Sec. 23. It creates
from sigexp a less opaque signature in which
longtycon abbreviates ty .

Example 27.4 We can use a type realisation in-
stead of a type abbreviation to get a Ford
structure with the desired transparency of the
Ford.year type. The body of the structure
is unchanged, only the signature in the opaque
signature constraint is new:

structure Ford:>
MANUFACTURER
where type year=Year.year =

struct
type year = Year.year
type car = {make: string,

built: Year.year,
price: real}

fun built(c:car) = #built c
val first =

{make = "Ford Model A",
built= Year.ad 1903,
price = 750.0} (*USD*)

(* assume 4 % inflation
per year: *)

val yr_inflation = 1.04

Modules 17

fun evolve(c:car)=
{make= #make c,
built= Year.next(built c),
price= yr_inflation

* #price c}
fun toString(c)=

#make c ˆ
" USD " ˆ
Int.toString(

Real.floor(#price c))
end;

(* now ok: *)
val s = Year.toString(

Ford.built Ford.first)

ut

28 Functors
A functor is a parameterised module. A com-
mon form of functor declaration is

functor funid(strid:sigexp):sigexp ′=
strexp

We use funid to range over functor identi-
fiers. The structure identifier strid is the for-
mal parameter, sigexp is the parameter signa-
ture, sigexp ′ is the result signature and strexp is
the body of functor funid . The transparent con-
straint :sigexp ′ (i.e., the result signature) can be
omitted. Alternatively, it can be replaced by an
opaque signature constraint: :>sigexp ′.

The result signature, when present, restricts
the result of the functor application, as described
in Sec. 25 and Sec. 26.

Functor application takes the form

funid(strexp)

and is itself a structure expression; strexp is the
actual argument.

There is an alternative form for functor decla-
ration, namely

functor funid(spec):sigexp ′=strexp

and a corresponding alternative form for functor
application

funid(strdec)

These forms make it look like functors can take
more than one parameter. (Formally, the alterna-
tive forms are just syntactic sugar for a functor
which has one, anonymous structure argument.)

Example 28.1 Here is a functor,
Manufacturer, which is first declared
and then applied twice, to obtain two different
car manufacturer structures.

functor Manufacturer(
structure Y: YEAR
val name: string
val first: Y.year
val usd: int
): MANUFACTURER=
struct

type year = Y.year
type car = {make: string,

built: Y.year,
price: real}

fun built(c:car) = #built c
val first ={make = name,

built= first,
price= real usd}

(* assume 4 % inflation
per year: *)

val yr_inflation = 1.04
fun evolve(c:car)=

{make= #make c,
built= Y.next(built c),
price= yr_inflation

* #price c}
fun toString(c)=

#make c ˆ
" USD " ˆ

18 Modules

Int.toString(
Real.floor(#price c))

end;

structure Ford=
Manufacturer(

structure Y= Year
val name = "Ford Model A"
val first= Y.ad 1903
val usd = 750

)

structure Honda=
Manufacturer(

structure Y= Year
val name = "Honda S500"
val first = Y.ad 1963
val usd = 1275

)

Because the result signature constraint is trans-
parent, the types Ford.year, Honda.year
and Year.year are equal. However, the trans-
parency of the signature constraint also results
in the types Ford.car and Honda.car be-
ing exposed as the tuple types they are. If one
wants to prevent this, without losing the equal-
ity of the year types, once can use an opaque
result signature together with a type realisation:

functor Manufacturer(
structure Y: YEAR
val name: string
val first: Y.year
val usd: int
):> MANUFACTURER where

type year=Y.year =
struct

(* ... as before... *)
end

In subsequent examples, we will assume the lat-
ter definition of Manufacturer. ut
There are many advantages to using functors.

First, one can develop and typecheck the
functor before one has written the structures to
which it is eventually going to be applied. This
gives increased flexibity in the development pro-
ces.

Example 28.2 Referring to Example 28.1,
we can develop and typecheck YEAR,
MANUFACTURER and Manufacturer
before we decide on the implementation of
YEAR. ut

Second, one can use a functor to make depen-
dencies on other structures explicit by declar-
ing these structures as parameters to the functor.
This can make the program easier to read than
if one has to read throught the functor body to
detect dependencies.

Example 28.3 In example Example 27.1, the
dependency of Ford on Year is buried in-
side the body of Ford, in the form of long
identifiers starting with Year. By contrast, in
Example 28.1, we see immediately from the
formal parameters of Manufacturer, that the
module depends on a structure that implements
years plus various values (name, first and
usd). ut

Third, during the type checking of the body
of a functor, all that is assumed about the for-
mal parameter is what the parameter signature
reveals. This removes dependencies on implen-
tation choices in previosly declared structures.

Example 28.4 Referring to Example 28.1,
any attempt inside the body of the functor to
assume, for example, that Y.year is int
will make the type checker reject the functor
declaration. ut

Fourth, whenever a functor has been success-
fully type-checked, it can be applied to any
structure which matches the parameter signature

Modules 19

and the application is certain to yield a well-
typed structure. So changes to the actual param-
eter structure will not force changes to the func-
tor body, as long as the revised argument struc-
ture matches the formal parameter signature of
the functor.

Example 28.5 Referring to Example 28.1,
changes to the Year structure do not force
changes to the Manufacturer functor, as
long as the revised Year structure matches
YEAR. ut

Finally, a functor can be applied to different
structures, so that one can get different instances
of the functor body without copying the code of
the functor body.

Example 28.6 Referring to Example 28.1, we
saw that the functor was applied twice to obtain
two different structures, Ford and Honda. ut

Specification of Sharing
Sometimes it is necessary to specify that two (or
more) types in different formal parameter struc-
tures of a functor are equal. The specification

spec sharing type
longtycon1 = . . . = longtyconn

specifies that the types
longtycon1, . . . , longtyconn, which must
all be specified in spec, are equal (without
saying what they are).

Example 28.7 Below is a functor
InflationTable. It has formal
parameter structures Y: YEAR and
M: MANUFACTURER. It produces a func-
tion print, which, when applied to unit, prints
a table of the price of the original car adjusted
for inflation, from the year it was first produced
till 2020.

functor InflationTable(
structure Y: YEAR
structure M: MANUFACTURER
sharing type Y.year = M.year):
sig

val print: unit -> unit
end=

struct
fun line(y,c) =

if y= Y.ad 2020 then ()
else

(TextIO.output(
TextIO.stdOut,
Y.toString y
ˆ "\t" ˆ M.toString c
ˆ "\n");

line(Y.next y,
M.evolve c)

)
val y0 = M.built M.first
fun print() = line(y0,M.first)

end;

structure P1 = InflationTable(
structure Y = Year
structure M = Ford);

structure P2 = InflationTable(
structure Y = Year
structure M = Honda);

val _ = P1.print();
val _ = P2.print();

The sharing constraint is necessary
because the body of the functor as-
sumes the equality of the two types, in
the expression line(y0,M.first),
where (y0,M.first) has type
M.year * M.car and function line
has type Y.year * M.car -> unit. ut

It is also possible to specify sharing between

20 Modules

entire structures, which can be useful if one pro-
grams with substructures.

29 Programs

A top-level declaration is either a functor dec-
laration, a signature declaration or a structure-
level declaration. A program is a top-level dec-
laration terminated by a semicolon and consti-
tutes the unit of compilation in an interactive
session (see Sec. 20). Notice that structures can
be declared inside structures, but signatures and
functor can be declared at the top level only.

30 Further Reading

The Definition of Standard ML[2] defines Stan-
dard ML formally. The Standard ML Basis
Library[1] contains a large collection of mod-
ules and is recommended to anyone who wants
to program real applications in Standard ML.

The textbooks on Computer Programming,
using Standard ML as a programming language,
include Paulson’s book [3].

All examples in this document were checked
on the Moscow ML implementation of Stan-
dard ML version 2.1, which is available
from www.itu.dk/people/sestoft.
Other Standard ML implementations in-
clude Standard ML of New Jersey, which
is available from www.smlnj.org,
and the ML Kit, which is available from
www.itu.dk/research/mlkit.

References

[1] Emden R. Gansner and John H. Reppy. The
Standard ML Basis Library. Cambridge
University Press, 2004.

[2] Robin Milner, Mads Tofte, Robert Harper,
and David MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[3] Laurence C. Paulson. ML for the Working
Programmer 2nd Edition. Cambridge Uni-
versity Press, 1996.

Version Control
Aug 30, 2009 Corrected typos pointed out by

Nik Sultana.

Apr 5, 2008 Substantial revision. Based on
Standard ML 1997.

Dec 20, 1993 Initial version. Based on Stan-
dard ML 1990.

http://www.itu.dk/people/sestoft
http://www.smlnj.org
http://www.itu.dk/research/mlkit

	Numbers
	Overloaded Arithmetic Operators
	Strings
	Lists
	Expressions
	Declarations
	Function Values
	Constructed Values
	Patterns
	Pattern Matching
	Function-value Bindings (revisited)
	Function Application
	Type Expressions
	Type Abbreviations
	Datatype Declarations
	Exceptions
	References
	Procedures
	Input and Output
	The top-level loop
	Modules
	Structures
	Signatures
	Structure Matching
	Transparent Signature Constraints
	Opaque Signature Constraints
	Structures as Modules
	Functors
	Programs
	Further Reading

