

Lecture 06: Private-key Encryption (Definition & Security of One-time Pad)

Objective

- First, we shall define the correctness and the privacy of private-key encryption schemes
- We shall argue that the one-time pad is correct and private

- Three algorithms
 - Key Generation: Generate the secret key sk
 - Encryption: Given the secret key sk and a message m , it outputs the cipher-text c (Note that the encryption algorithm can be a randomized algorithm)
 - Decryption: Given the secret key sk and the cipher-text c , it outputs a message m' (Note that the decryption algorithm can be a randomized algorithm)

Story of the Private-key Encryption Process

- Yesterday Alice and Bob met and generated a secret key $sk \sim \text{Gen}()$
 - Read as: the secret key sk is sampled according to the distribution $\text{Gen}()$
- Today Alice wants to encrypt a message m using the secret key sk . Alice encrypts $c \sim \text{Enc}_{sk}(m)$
 - Read as: the cipher-text c is sampled according to the distribution $\text{Enc}_{sk}(m)$
- Then Alice sends the ciphertext c to Bob. An eavesdropper gets to see the ciphertext c
- After receiving the cipher-text c Bob decrypts it using the secret key sk . Bob decrypts $m' \sim \text{Dec}_{sk}(c)$
 - Read as: the decoded message m' is sampled according to the distribution $\text{Dec}_{sk}(c)$

- We want the decoded message obtained by Bob to be identical to the original message of Alice with a high probability
- We insist

$$\mathbb{P} [M = M'] = 1$$

- Recall we use capital alphabets to represent the random variable corresponding to the variable (so, M is the random variable for the message encoded by Alice and M' is the random variable for the message recovered by Bob)

- We want to say that the cipher-text c provides the adversary no additional information about the message
- We insist that, for all message m , we have

$$\mathbb{P} [\mathbb{M} = m | \mathbb{C} = c] = \mathbb{P} [\mathbb{M} = m]$$

Cropping any Constraint makes the Problem Trivial

- Suppose we insist only on correctness and not on privacy
 - The trivial scheme where $\text{Enc}_{\text{sk}}(m) = m$, i.e. the encryption of any message m using any secret key sk is the message itself, satisfies correctness. But it is completely insecure!
- Suppose we insist only on privacy and not on correctness
 - The trivial scheme where $\text{Enc}_{\text{sk}}(m) = 0$, i.e. the encryption of any message m using any secret key sk is 0, satisfies this privacy. But Bob cannot correctly recover the original message m with certainty!
- So, the non-triviality is to achieve correctness and privacy simultaneously

One-time Pad

- Let (G, \circ) be a group
- Secret-key Generation:

$\text{Gen}()$:

- Return $\text{sk} \xleftarrow{\$} G$

- Encryption:

$\text{Enc}_{\text{sk}}(m)$:

- Return $c := m \circ \text{sk}$

- Decryption:

$\text{Dec}_{\text{sk}}(c)$:

- Return $m' := c \circ \text{inv}(\text{sk})$

- Note that Encryption and Decryption is deterministic
- The only randomized step is the choice of sk during the secret-key generation algorithm

Correctness of One-time Pad

- It is trivial to see that

$$\mathbb{P} [M = M'] = 1$$

- So, the one-time pad is correct!

- We want to simplify the probability

$$\mathbb{P} [\mathbb{M} = m | \mathbb{C} = c]$$

- Using Bayes' Rule, we have

$$= \frac{\mathbb{P} [\mathbb{M} = m, \mathbb{C} = c]}{\mathbb{P} [\mathbb{C} = c]}$$

- Using the fact that $\mathbb{P} [\mathbb{C} = c] = \sum_{x \in G} \mathbb{P} [\mathbb{M} = x, \mathbb{C} = c]$, we get

$$= \frac{\mathbb{P} [\mathbb{M} = m, \mathbb{C} = c]}{\sum_{x \in G} \mathbb{P} [\mathbb{M} = x, \mathbb{C} = c]}$$

- We will prove the following claim later

Claim

For any $x, y \in G$, we have

$$\mathbb{P}[\mathbb{M} = x, \mathbb{C} = y] = \mathbb{P}[\mathbb{M} = x] \cdot \frac{1}{|G|}$$

- Using this claim, we can simplify the expression as

$$\begin{aligned} &= \frac{\mathbb{P}[\mathbb{M} = m] \cdot \frac{1}{|G|}}{\sum_{x \in G} \mathbb{P}[\mathbb{M} = x] \cdot \frac{1}{|G|}} \\ &= \frac{\mathbb{P}[\mathbb{M} = m]}{\sum_{x \in G} \mathbb{P}[\mathbb{M} = x]} \end{aligned}$$

- Using the fact that $\sum_{x \in G} \mathbb{P}[\mathbb{M} = x] = 1$, we get that the previous expression is

$$= \mathbb{P}[\mathbb{M} = m]$$

- This proves that $\mathbb{P}[\mathbb{M} = m | \mathbb{C} = c] = \mathbb{P}[\mathbb{M} = m]$, for all m and c . This proves that the one-time pad encryption scheme is secure!

Proof of Claim 1

- You will prove the following statement in the homework: If there exists sk such that $x \circ sk = y$ then sk is unique (i.e., there does not exist $sk' \neq sk$ such that $x \circ sk' = y$)
- Using this result, we get the following. Suppose $z \in G$ be the unique element such that $x \circ z = y$. Then we have:

$$\mathbb{P}[\mathbb{M} = x, \mathbb{C} = y] = \mathbb{P}[\mathbb{M} = x, \mathbb{SK} = z]$$

- Note that the secret key sample is independent of the message x . So, we have

$$\mathbb{P}[\mathbb{M} = x, \mathbb{SK} = z] = \mathbb{P}[\mathbb{M} = x] \cdot \mathbb{P}[\mathbb{SK} = z]$$

- Note that sk is sampled uniformly at random from the set G . So, we have

$$\mathbb{P}[\mathbb{M} = x, \mathbb{SK} = z] = \mathbb{P}[\mathbb{M} = x] \cdot \frac{1}{|G|}$$

Example

- Encrypting bit messages
 - Consider $(G, \circ) = (\mathbb{Z}_2, + \bmod 2)$

- Encrypting n -bit strings
 - Consider $G = \{0, 1\}^n$
 - Define $(x_1, \dots, x_n) \circ (y_1, \dots, y_n) = (x_1 + y_1 \bmod 2, \dots, x_n + y_n \bmod 2)$

- Encrypting an alphabet
 - Consider $G = \mathbb{Z}_{26}$
 - Define \circ as $+$ mod 26
- You will construct one more scheme in the homework by interpreting the set of alphabets as \mathbb{Z}_{27}^*

- Encrypting n -alphabet words
 - Consider $G = \mathbb{Z}_{26}^n$
 - Define \circ as the coordinate-wise $+$ mod 26