

Recall

@ Let (G, o) be a group with generator g

o We define g% = e, where e € G is the identity element of G
I-times

o We define g’ = m

o For example, the group (Z3, x) is generated by 3 but not 2

Repeated Squaring

Motivation of Efficient Algorithm to Compute
Exponentiation

@ Suppose p is a prime number that is represented using
1000-bits

o Note that the number p is in the range [2999,21000) e shall

summarize this by stating that p is roughly (in the order of)
51000

@ Suppose we are interested to work on the field (Zj, x) with
generator g

e Given input i € {0,1,...,p — 1}, we are interested in
computing g' € Z,

Repeated Squaring

First Attempt

Exp (/):
@ prod=-¢
@ For index in the range {1,...,i}:
@ prod =prodog

© Return prod

@ Note that this algorithm runs the inner loop i times. The
number i can take values {0,1,...,p — 2}. For example, if
i > 2590 then the algorithm will run the inner loop more than
the number of atoms in the universe. Effectively, the algorithm
is useless

@ The algorithm takes O(/) run-time. The size of the input i is
log i. So, this algorithm is an exponential time algorithm

Repeated Squaring

Second Attempt

\

Exp (i):

@ If i =0: Return e

Q If i is even:
0 o=Exp(i/2)
@ Return o«

@ If jis odd:
0 a=Exp((i—1)/2)
@ Returnaoaog

@ Note that the argument to Exp becomes smaller by one-bit in
recursive call. So, the algorithm performs (at most) 1000
recursive call. This is an efficient algorithm because it runs in
time O(log /)

Repeated Squaring

Second Attempt I

\

A Few Optimizations.

@ Testing whether / is even or not can be performed by
computing i&1 (here, & is the bit-wise and of the binary
representation of / and 1

e Computing (i/2) when i is even, or computing (i — 1)/2 when
i is odd can be achieved by i > 1 (that is, right-shift the
binary representation of i by one position)

Repeated Squaring

\

Second Attempt

The code shall look as follows

Exp (/):
Q@ If i =0: Return e
Q,/>1
Q If (i&l)==0:
0 o = Exp(j)
® Return aoa
Q else:

@ o= Exp(j)
® Return aoaog

Repeated Squaring

\

Second Attempt

© The algorithm makes recursive calls. Can we further optimize
and avoid recursive function calls? That is, can we unroll the
recursion into a for loop?

Repeated Squaring

Final Attempt

In the following code, we assume that we represent the prime p
using t-bits. For example, we were considering t = 1000 in the

ongoing example.
We perform a preprocessing step to compute the following global
variables.

Global Preprocessing.
© For index in the set {0,1,...,t —1}:
@ If index == 0: Qlindex = & and Cindex = 1
(2] Else: Qindex = Xindex—1 © (index—1 and Cindex = (Cindexfl < 1)

@ Note that tingex = g2index, for all index € {0,1,...,t — 1}

o Further, note that cjpgex = 29, for all
index € {0,1,...,t— 1}

Repeated Squaring

Final Attempt

We shall use the preprocessed data to compute the exponentiation

Exp (/):
Q prod=¢
@ For index in the set {0,1,...,t —1}:
® If (/ < Gindex) : Break
© If (i&cindex) # 0: prod = prod o Gindex

© Return prod

@ Note that the test “the (1 + index)-th bit in the binary

representation of / is 1" is identical to the test (i&Gngex) 7# 0
2index

If this test passes, then prod is multiplied by tindex = &

Prove: This approach correctly calculates g’

Note that the runtime is O(log i) (that is, the algorithm is
efficient)

Repeated Squaring

Example Problem

@ Let us consider a problem that shall use all the facts we
studied about groups and fields in the last two lectures. There
are multiple solutions with varying degree of complexities

e Compute
172920 mod 23

Repeated Squaring

Example Problem I

Solution 1.

@ We can use repeated squaring directly to compute

171 mod 23
172 mod 23
17* mod 23

171924 mod 23

o Write 2020 in binary and compute 17292° mod 23 using the
values computed above

@ Although this is a correct and a tractable way to compute this
value, it is computationally intensive and prone to errors
(without a calculator)

Repeated Squaring

Example Problem

Solution 2.

@ In homework you will prove that x? = x mod p, where p is a
prime and x is any integer

@ You can use this fact to simplify the computation of 172920
mod 23 as follows

Repeated Squaring

Example Problem \Y,

17 mod 23 =172 17" mod 23

2
- (1723) 177 mod 23

= (1723)87 17" mod 23

=(17)¥ -17"° mod 23, using x* = x mod p
=17""° mod 23

= (1723)4 17" mod 23

=(17)*- 17" mod 23, using x* = x mod p
=17"* mod 23

@ This final expression can be computed using the repeated
squaring technique

Repeated Squaring

Example Problem

Solution 3.
@ In homework you will prove that xP~1 =1 mod p, where p is
a prime and x is any integer NOT divisible by p (there are also
alternate proofs of this statement by considering the size of
the subgroup of (Z5, x) that is generated by x)

@ So, we can compute the expression as follows

17%°2° mod 23 = 17% - 17*°® mod 23

- (1722)2 177 mod 23

91
:(1722) .17*® mod 23

1

= (1) -17"® mod 23, using x> =1 mod p

=17®% mod 23

Repeated Squaring

Example Problem

Vi

e BTW, in general you can conclude that

n n mod p—1

x" = x mod p,

for any integer n and any integer x that is not divisible by p

718

@ Now you can compute 1 mod 23 result using repeated

squaring technique

171 =17 mod 23
172 =13 mod 23
17 =8 mod 23
178 =18 mod 23
171 =2 mod 23

Repeated Squaring

l

Example Problem VII

@ Now, we have

1788 = 17152 mod 23
=17%.172 mod 23
=2-13 mod 23
=3 mod 23

@ Therefore, we conclude that
172020 — 1718 — 3 mod 23.

That is our answer!

Repeated Squaring

