

Lecture 03: Groups and Fields

Definition

A *group*, represented by (G, \circ) , is defined by a set G and a binary operator \circ that satisfies the following properties

- ① **Closure.** For all $a, b \in G$, we have $a \circ b \in G$
- ② **Associativity.** For all $a, b, c \in G$, we have
$$(a \circ b) \circ c = a \circ (b \circ c)$$
- ③ **Identity.** There exists an element $e \in G$ such that for all $a \in G$, we have $a \circ e = a$
- ④ **Inverse.** For every element $a \in G$, there exists an element $(-a) \in G$ such that $a \circ (-a) = e$

A Quick Check

- Verify that $(\{0, 1\}^n, \oplus)$, where \oplus is the bit-wise XOR of bits, is a group
 - Closure and Associativity is trivial to verify
 - Show that $\overbrace{00 \cdots 0}^{n\text{-times}}$ is the identity
 - Show that for $a \in \{0, 1\}^n$, the inverse of a is a itself

One-time Pad extended to Arbitrary Groups

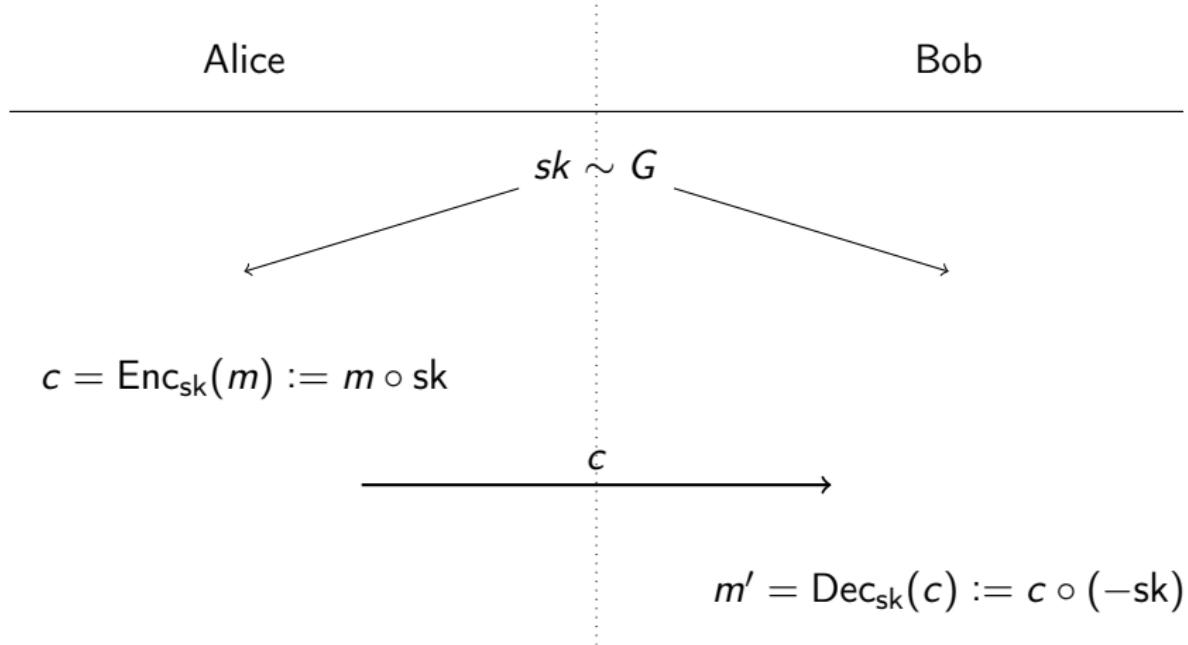


Figure: One-time Pad encryption scheme for the group (G, \circ) .

Verify that the scheme is always correct

- Groups can have infinite size. $(\mathbb{Z}, +)$, where \mathbb{Z} is the set of all integers and $+$ is integer addition, is a group (Verify that it satisfies all properties of a group)
- Groups can have finite size. $(\mathbb{Z}_n, +)$, where $\mathbb{Z}_n = \{0, \dots, n-1\}$ and $+$ is integer addition $\bmod n$, is a group (Verify that it satisfies all properties of a group)

Following are NOT groups. Find which rule is violated.

- (\mathbb{Z}, \times) , where \times is the integer multiplication
- (\mathbb{Z}^*, \times) , where \mathbb{Z}^* is the set of all non-zero integers and \times is the integer multiplication
- (\mathbb{Q}, \times) , where \mathbb{Q} is the set of all rationals and \times is rational multiplication

But (\mathbb{Q}^*, \times) , where \mathbb{Q}^* is the set of all non-zero rationals and \times is rational multiplication, is a group!

- Prove that (\mathbb{Z}_p^*, \times) is a group when p is a prime, \times is integer multiplication mod p , and $\mathbb{Z}_p^* = \{1, \dots, p-1\}$
- Prove that (\mathbb{Z}_n^*, \times) is NOT a group when n is NOT a prime, \times is integer multiplication mod n , and $\mathbb{Z}_n^* = \{1, \dots, n-1\}$

Groups need not be commutative.

- Define a group that is not commutative. Hint: Consider G as the set of $n \times n$ full-rank matrices with elements in \mathbb{Q} . Now, define \circ as matrix multiplication.

We shall define left and right inverses and left and right identities in the homework. We shall prove interesting properties regarding these inverses and identities.

- Consider the group $(\mathbb{Z}_5, +)$
- Note that
 - 2 added 0-times is 0
 - 2 added 1-times is 2
 - 2 added 2-times is 4
 - 2 added 3-times is 1
 - 2 added 4-times is 3
 - 2 added 5-times is 0
 - (and so on)
- We say that 2 generates $(\mathbb{Z}_5, +)$ because we can generate the entire set \mathbb{Z}_5 by repeatedly “+”-ing 2 to itself
- Consider the group (\mathbb{Z}_7^*, \times) . Which elements in \mathbb{Z}_7 generate the group? And which elements do not generate the group?

- We will introduce a shorthand. By a^k , we represent the k -times number $\overbrace{a \circ a \circ \cdots \circ a}^{k\text{-times}}$
- We define $a^0 = e$, the identity of the group

Repeated Squaring Technique

Let g be a generator of a group (G, \circ) . Consider the following algorithm.

- Let $n[0] := g$, the identity of (G, \circ)
- For $i = 1$ to k , do the following:
 - $n[i] := n[i - 1] \circ n[i - 1]$

- At the termination of the algorithm, we have the following $n[0] = g, n[1] = g^2, n[2] = g^4, \dots, n[k] = g^{2^k}$
- Note that we only used the \circ operation only k times in this algorithm to generate this sequence
- Let i be an integer in the range $\{0, \dots, 2^{k+1} - 1\}$
- How to compute g^i using $(k + 1)$ additional \circ operations?
- Note: This gives us an algorithm to compute g^i , where $i \in \{0, \dots, 2^{k+1} - 1\}$ using at most $(2k + 1)$ \circ operations!

Why Repeated Squaring is Efficient?

- Let (G, \circ) be a group generated by g
- Suppose we are interested in computing g^i
- First Algorithm: Multiply g i -times to get g^i . This method takes $O(i)$ time.
- Second Algorithm: Use repeated squaring to compute g^i . This method takes $O(\log i)$ time.
- Why is the first algorithm an exponential-time algorithm?
Why is the second algorithm a polynomial-time algorithm?

Definition

A field is defined by a set of elements \mathbb{F} , and two operators $+$ and \cdot . The field $(\mathbb{F}, +, \cdot)$ satisfies the following properties

- 1 Closure.** For all $a, b \in \mathbb{F}$, we have $a + b \in \mathbb{F}$ and $a \cdot b \in \mathbb{F}$
- 2 Associativity.** For all $a, b, c \in \mathbb{F}$, we have $(a + b) + c = a + (b + c)$ and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3 Commutativity.** For all $a, b \in \mathbb{F}$, we have $a + b = b + a$ and $a \cdot b = b \cdot a$
- 4 Additive and Multiplicative identities.** There exists elements $0 \in \mathbb{F}$ and $1 \in \mathbb{F}$ such that for all $a \in \mathbb{F}$, we have $a + 0 = a$ and $a \cdot 1 = a$
- 5 Additive inverse.** Every $a \in \mathbb{F}$ has $(-a) \in \mathbb{F}$ such that $a + (-a) = 0$
- 6 Multiplicative inverse.** Every $0 \neq a \in \mathbb{F}$ has $(a^{-1}) \in \mathbb{F}$ such that $a \cdot (a^{-1}) = 1$
- 7 Distributivity.** For all $a, b, c \in \mathbb{F}$, we have $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Examples

- $(\mathbb{Z}_p, +, \times)$ is a field when p is a prime, $+$ is integer addition mod p , and \times is integer multiplication mod p
- $(\mathbb{Q}, +, \times)$ is a field
- The first example mentioned above is a *finite* field, and the second example mentioned above is an *infinite* field
- Size of any finite field is p^n , where p is a prime and n is a natural number
- Additional Reading: If interested, read about how the fields of size p^2 , p^3 , ... are defined