Lecture 18: Encrypting Long Messages
Earlier, we saw that the length of the secret key in a one-time pad has to be at least the length of the message being encrypted.

Our objective in this lecture is to use smaller secret keys to encrypt longer messages (that is, secure against computationally bounded adversaries).
Recall

Suppose \(f : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n} \) is a one-way permutation (OWP)

Then, we had see that the function
\[
G : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^{2n+1}
\]
defined by
\[
G(r, x) = (r, f(x), \langle r, x \rangle)
\]
is a one-bit extension PRG

Let us represent \(f^i(x) \) as a short-hand for \(f(\cdots f(f(x))\cdots) \).
\(f^0(x) \) shall represent \(x \).

By iterating the construction, we observed that we could create a stream of pseudorandom bits by computing
\[
b_i(r, x) = \langle r, f^i(x) \rangle
\]
(Note that, if we already have \(f^i(x) \) stored, then we can efficiently compute \(f^{i+1}(x) \) from it)

So, the idea is to encrypt long messages where the \(i \)-th bit of the message is masked with the bit \(b_i(r, x) \)
Without loss of generality, we assume that our objective is to encrypt a stream of bits \((m_0, m_1, \ldots)\).

- **Gen()**: Return \(sk = (r, x) \leftarrow \{0, 1\}^{2n}\), where \(r, x \in \{0, 1\}^n\).

- Alice and Bob shall store their state variables: \(\text{state}_A\) and \(\text{state}_B\). Initially, we have \(\text{state}_A = \text{state}_B = x\).

- **Enc_{sk,\text{state}_A}(m_i)**: \(c_i = m_i \oplus \langle r, \text{state}_A \rangle\), and update \(\text{state}_A = f(\text{state}_A)\), where \(sk = (r, x)\).

- **Dec_{sk,\text{state}_B}(\tilde{c}_i)**: \(\tilde{m}_i = \tilde{c}_i \oplus \langle r, \text{state}_B \rangle\), and update \(\text{state}_B = f(\text{state}_B)\), where \(sk = (r, x)\).

Note that the \(i\)-th bit is encrypted with \(b_i(r, x)\) and is also decrypted with \(b_i(r, x)\). So, the correctness holds. This correctness guarantee holds as long as the order of the encryptions and the decryptions remain identical.

Note that each bit \(b_i(r, x)\) is uniform and independent of all previous bits (for computationally bounded adversaries). So, the scheme is secure against all computationally bounded adversaries.