Lecture 03: One-time Pad for Bit-strings
We will see an encryption algorithm called “One-time Pad” for bit-strings.

In the future, we shall extend its domain to general abstract objects (for example, groups).
One-time Pad I

Yesterday.

- **Secret-key Generation**: Alice and Bob met and sampled a secret-key sk uniformly at random from the set \(\{0, 1\}^n \), mathematically represented by \(sk \sim \{0, 1\}^n \)

Today.

- **Goal**: Alice wants to send a message \(m \in \{0, 1\}^n \) to Bob over a public channel so that any eavesdropper cannot figure out the message \(m \).

- **Encryption**: To achieve this goal, Alice computes a ciphertext \(c \) that encrypts the message \(m \) using the secret-key sk, mathematically represented by \(c = Enc_{sk}(m) := m \oplus sk \). Here \(\oplus \) represents the bit-wise XOR of the bits of \(m \) and sk.

- **Communication**: Alice sends the cipher-text \(c \) to Bob over a public channel

- **Decryption**: Now, Bob wants to decrypt the cipher-text \(c \) to recover the message \(m \). Mathematically, this step is represented by \(m' = Dec_{sk}(c) := c \oplus sk \)
Correctness: Note that we will always have $m = m'$, i.e., Bob always correctly recovers the message

- Note that in our case, we always have $m = m'$
- There are encryption schemes where with a small probability $m \neq m'$ is possible, i.e., the encryption scheme is incorrect with a small probability

Security: Later in the course we shall see how to mathematically prove the following statement.

"An adversary who gets the ciphertext c obtains no additional information about the message m sent by Alice."
$sk \sim \{0, 1\}^n$

$c = \text{Enc}_{sk}(m) := m \oplus sk$

$m' = \text{Dec}_{sk}(c) := c \oplus sk$

Figure: Pictorial Summary of the One-time Pad Encryption Scheme.
Dropping one Restriction makes the task Trivial

- Suppose we insist only on correctness and not on security
 - The trivial scheme where $\text{Enc}_{sk}(m) = m$, i.e., the encryption of any message m using any secret key sk is the message itself, satisfies correctness. However, this scheme is completely insecure!

- Suppose we insist only on security and not on correctness
 - The trivial scheme where $\text{Enc}_{sk}(m) = 0$, i.e., the encryption of any message m using any secret key sk is 0, satisfies the security constraint. However, Bob cannot correctly recover the original message m with certainty!

- So, the non-triviality is to simultaneously achieve correctness and security
We are not trying to hide the fact that Alice sent a message to Bob

We are trying to hide only the message that is being sent by Alice to Bob
Fix a cipher-text c
Consider any message m
There exists a unique secret-key $sk_{m,c}$ such that
$$\text{Enc}_{sk_{m,c}}(m) = c$$
This observation shall be crucial to proving the security of the one-time pad private-key encryption scheme