Lecture 02: Mathematical Basics (Probability)
Probability Basics

- Sample Space: \(\Omega \) is a set of outcomes (it can either be finite or infinite)
- Random Variable: \(X \) is a random variable that assigns probabilities to outcomes

Example: Let \(\Omega = \{\text{Heads, Tails}\} \). Let \(X \) be a random variable that outputs Heads with probability 1/3 and outputs Tails with probability 2/3

- The probability that \(X \) assigns to the outcome \(x \) is represented by

\[
P[X = x]
\]

Example: In the ongoing example \(P[X = \text{Heads}] = 1/3 \).
Let $f : \Omega \to \Omega'$ be a function
Let X be a random variable over the sample space Ω
We define a new random variable $f(X)$ is over Ω' as follows

$$P[f(X) = y] = \sum_{x \in \Omega : f(x) = y} P[X = x]$$
Suppose \((X_1, X_2)\) is a random variable over \(\Omega_1 \times \Omega_2\).

Intuitively, the random variable \((X_1, X_2)\) takes values of the form \((x_1, x_2)\), where the first coordinate lies in \(\Omega_1\), and the second coordinate lies in \(\Omega_2\).

For example, let \((X_1, X_2)\) represent the temperatures of West Lafayette and Lafayette. Their sample space is \(\mathbb{Z} \times \mathbb{Z}\). Note that these two outcomes can be correlated with each other.
Let $P_1 : \Omega_1 \times \Omega_2 \rightarrow \Omega_1$ be the function $P_1(x_1, x_2) = x_1$ (the projection operator).

So, the random variable $P_1(X_1, X_2)$ is a probability distribution over the sample space Ω_1.

This is represented simply as X_1, the marginal distribution of the first coordinate.

Similarly, we can define X_2.
Conditional Distribution

- Let \((X_1, X_2)\) be a joint distribution over the sample space \(\Omega_1 \times \Omega_2\).
- We can define the distribution \((X_1 \mid X_2 = x_2)\) as follows:
 - This random variable is a distribution over the sample space \(\Omega_1\).
 - The probability distribution is defined as follows:

\[
P [X_1 = x_1 \mid X_2 = x_2] = \frac{P [X_1 = x_1, X_2 = x_2]}{\sum_{x \in \Omega_1} P [X_1 = x, X_2 = x_2]}
\]

For example, conditioned on the temperature at Lafayette being 0, what is the conditional probability distribution of the temperature in West Lafayette?
Theorem (Bayes’ Rule)

Let \((X_1, X_2)\) be a joint distribution over the sample space \((\Omega_1, \Omega_2)\). Let \(x_1 \in \Omega_1\) and \(x_2 \in \Omega_2\) be such that \(\mathbb{P}[X_1 = x_1, X_2 = x_2] > 0\). Then, the following holds.

\[
\mathbb{P}[X_1 = x_1 \mid X_2 = x_2] = \frac{\mathbb{P}[X_1 = x_1, X_2 = x_2]}{\mathbb{P}[X_2 = x_2]}
\]

The random variables \(X_1\) and \(X_2\) are independent of each other if the distribution \((X_1 \mid X_2 = x_2)\) is identical to the random variable \(X_1\), for all \(x_2 \in \Omega_2\) such that \(\mathbb{P}[X_2 = x_2] > 0\).
We can generalize the Bayes’ Rule as follows.

Theorem (Chain Rule)

Let \((X_1, X_2, \ldots, X_n)\) be a joint distribution over the sample space \(\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n\). For any \((x_1, \ldots, x_n) \in \Omega_1 \times \cdots \times \Omega_n\) we have

\[
P[X_1 = x_1, \ldots, X_n = x_n] = \prod_{i=1}^{n} P[X_i = x_i \mid X_{i-1} = x_{i-1}, \ldots, X_1 = x_1]
\]
In which context do we foresee to use the Bayes’ Rule to compute joint probability?

- Sometimes, the problem at hand will clearly state how to sample X_1 and then, conditioned on the fact that $X_1 = x_1$, it will state how to sample X_2. In such cases, we shall use the Bayes’ rule to calculate

$$P[X_1 = x_1, X_2 = x_2] = P[X_1 = x_1]P[X_2 = x_2 | X_1 = x_1]$$

- Let us consider an example.
 - Suppose X_1 is a random variable over $\Omega_1 = \{0, 1\}$ such that $P[X_1 = 0] = 1/2$. Next, the random variable X_2 is over $\Omega_2 = \{0, 1\}$ such that $P[X_2 = x_1 | X_1 = x_1] = 2/3$. Note that X_2 is biased towards the outcome of X_1.
 - What is the probability that we get $P[X_1 = 0, X_2 = 1]$?
To compute this probability, we shall use the Bayes’ rule.

\[
P[X_1 = 0] = 1/2
\]

Next, we know that

\[
P[X_2 = 0|X_1 = 0] = 2/3
\]

Therefore, we have \(P[X_2 = 1|X_1 = 0] = 1/3 \). So, we get

\[
P[X_1 = 0, X_2 = 1] = P[X_1 = 0] P[X_2 = 1|X_1 = 0] = (1/2) \cdot (1/3) = 1/6
\]
Consider a joint distribution \((X_1, X_2)\) over the sample space \(\Omega_1 \times \Omega_2\).

The marginal distributions \(X_1\) and \(X_2\) are independent of each other, if for all \(x_1 \in \Omega_1\) and \(x_2 \in \Omega_2\) we have: If
\[
P[X_1 = x_1] > 0 \text{ then }
\]
\[
P[X_2 = x_2] = P[X_2 = x_2|X_1 = x_1].
\]

Equivalently, the following condition is satisfied
\[
P[X_1 = x_1] \cdot P[X_2 = x_2] = P[X_1 = x_1, X_2 = x_2].
\]
Let S be the random variable representing whether I studied for my exam. This random variable has sample space $\Omega_1 = \{Y, N\}$.

Let P be the random variable representing whether I passed my exam. This random variable has sample space $\Omega_2 = \{Y, N\}$.

Our sample space is $\Omega = \Omega_1 \times \Omega_2$.

The joint distribution (S, P) is represented in the next page.
Probability: First Example II

<table>
<thead>
<tr>
<th>s</th>
<th>p</th>
<th>$P[S = s, P = p]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>1/2</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>1/4</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>1/4</td>
</tr>
</tbody>
</table>
Here are some interesting probability computations.
The probability that I pass.

\[= \frac{1}{2} + 0 = \frac{1}{2} \]
The probability that I study.

\[= \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \]
The probability that I pass conditioned on the fact that I studied.

\[
P [P = Y \mid S = Y] = \frac{P [P = Y, S = Y]}{P [S = Y]} = \frac{1/2}{3/4} = \frac{2}{3}
\]
Let T be the time of the day that I wake up. The random variable T has sample space $\Omega_1 = \{4, 5, 6, 7, 8, 9, 10\}$.

Let B represent whether I have breakfast or not. The random variable B has sample space $\Omega_2 = \{T, F\}$.

Our sample space is $\Omega = \Omega_1 \times \Omega_2$.

The joint distribution of (T, B) is presented on the next page.
Probability: Second Example II

<table>
<thead>
<tr>
<th>t</th>
<th>b</th>
<th>$\mathbb{P}[T = t, B = b]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>T</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>0.05</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Basics
What is the probability that I have breakfast conditioned on the fact that I wake up at or before 7?

Formally, what is $P[B = T \mid T \leq 7]$?