Stirling Approximation

Hemanta K. Maji

January 18, 2022

1 Stirling's Approximation

Our objective is to prove the following result.
Theorem 1 (Stirling's approximation, Robbins Formula [Rob55]).

$$
\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} \exp \left(\frac{1}{12 n+1}\right) \leqslant n!\leqslant \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} \exp \left(\frac{1}{12 n}\right)
$$

Before we proceed with the proof, I want to mention the following stronger conjectured bound that I discovered (numerically); however, I was unable to prove this bound.

$$
\sqrt{2 \pi\left(n+\frac{1}{6}\right)}\left(\frac{n}{\mathrm{e}}\right)^{n} \leqslant n!\leqslant \sqrt{2 \pi\left(n+\frac{1}{6}+\frac{1}{72 n}\right)}\left(\frac{n}{\mathrm{e}}\right)^{n}
$$

Let us now proceed with the proof of Robbins formula.
Proof. Our objective is to prove tight upper and lower bounds of the form

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}
$$

So, we shall obtain bounds of the form

$$
\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} \cdot g(n) \leqslant n!\leqslant \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} \cdot f(n)
$$

where

$$
\begin{aligned}
& f(n)=\exp \left(\frac{1}{12 n}\right) \\
& g(n)=\exp \left(\frac{1}{12 n+1}\right)
\end{aligned}
$$

1. First, the idea is to prove that the following limit exists.

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}}=L
$$

2. Next, we prove that the following sequence is (weakly) increasing.

$$
\left\{\frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} f(n)}\right\}_{n \in \mathbb{N}}
$$

Since, this sequence also tends to L and is (weakly) increasing, we get that

$$
n!\leqslant L \cdot \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} f(n)
$$

3. Similarly, if we prove that the following sequence is (weakly) decreasing

$$
\left\{\frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} g(n)}\right\}_{n \in \mathbb{N}}
$$

then

$$
n!\geqslant L \cdot \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} g(n)
$$

These high-level technique is used to derive several tight bounds of this form.
Part 1. Take a look at the video. Then, you can take a look at more formal presentations as well.

Part 2. Let us prove the following

$$
\begin{aligned}
& \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} f(n)} & \leqslant \frac{(n+1)!}{\sqrt{2 \pi(n+1)}\left(\frac{n+1}{\mathrm{e}}\right)^{n+1} f(n+1)} \\
& \Longleftrightarrow \quad \frac{f(n+1)}{f(n)} & \leqslant \mathrm{e} \cdot\left(\frac{n}{n+1}\right)^{n+1 / 2} \\
& \Longleftrightarrow \quad \ln f(n+1)-\ln f(n) & \leqslant 1+(n+1 / 2) \ln \left(1-\frac{1}{n+1}\right) \\
& \Leftrightarrow \quad-\frac{1}{12 n(n+1)} & \leqslant 1+(n+1 / 2) \ln \left(1-\frac{1}{n+1}\right)
\end{aligned}
$$

We substitute $\varepsilon=1 /(n+1)$. Then, we have $(n+1)=1 / \varepsilon, n=(1-\varepsilon) / \varepsilon$ and $n+1 / 2=(1-\varepsilon / 2) / \varepsilon$. Therefore, the inequality is equivalent to

$$
-\frac{\varepsilon^{2}}{12(1-\varepsilon)} \leqslant 1-(1-\varepsilon / 2)\left(\sum_{i \geqslant 0} \frac{\varepsilon^{i}}{i+1}\right)=-\sum_{i \geqslant 2}\left(\frac{1}{i+1}-\frac{1}{2 i}\right) \varepsilon^{i}
$$

It suffices to prove that, for all $i \geqslant 2$, we have

$$
-\frac{1}{12} \leqslant-\left(\frac{1}{i+1}-\frac{1}{2 i}\right) \Longleftrightarrow\left(\frac{1}{i+1}-\frac{1}{2 i}\right) \leqslant \frac{1}{12}
$$

Consider the function $h(x)=\frac{1}{x+1}-\frac{1}{2 x}$ over the domain $x \in[2, \infty)$. Our objective is to find its extreme values. Observe that

$$
h^{\prime}(x)=-\frac{1}{(x+1)^{2}}+\frac{1}{2 x^{2}}=0
$$

Note that $2 x^{2}>(x+1)^{2} \equiv \sqrt{2}>1+\frac{1}{x}$, for all integer $x \geqslant 3$. Therefore, $h(x)$ is decreasing in $[3, \infty)$.
For integer $x \geqslant 2$, the maximum is achieved at $x=2$ or $x=3$. Note that $h(2)=h(3)=\frac{1}{12}$. So, for integer x, we have $h(x) \leqslant \frac{1}{12}$. This observation completes the proof.

Part 3. Let us prove the following

$$
\begin{aligned}
& \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n} g(n)} \geqslant \frac{(n+1)!}{\sqrt{2 \pi(n+1)}\left(\frac{n+1}{\mathrm{e}}\right)^{n+1} g(n+1)} \\
& \Longleftrightarrow \quad \frac{1}{12 n+13}-\frac{1}{12 n+1} \geqslant 1+(n+1 / 2) \ln \left(1-\frac{1}{n+1}\right)
\end{aligned}
$$

We substitute $\varepsilon=1 /(n+1)$. Then, we have $12 n+13=(12+\varepsilon) / \varepsilon$ and $12 n+1=(12-11 \varepsilon) / \varepsilon$. Therefore, the LHS becomes

$$
\left.\frac{1}{12 n+13}-\frac{1}{12 n+1}=\frac{\varepsilon}{12+\varepsilon}-\frac{\varepsilon}{12-11 \varepsilon}=\frac{\varepsilon / 12}{1+\varepsilon / 12}-\frac{\varepsilon / 12}{1-11 \varepsilon / 12}=\frac{1}{12} \sum_{j \geqslant 1}(-1 / 12)^{j}-(11 / 12)^{j}\right) \varepsilon^{j+1}
$$

We know from the above derivation that the RHS is

$$
-\sum_{i \geqslant 2}\left(\frac{1}{i+1}-\frac{1}{2 i}\right) \varepsilon^{i}
$$

Therefore, for integer $i \geqslant 2$, it suffices to show that

$$
\frac{1}{12}\left((-1 / 12)^{i-1}-(11 / 12)^{i-1}\right) \geqslant-\left(\frac{1}{i+1}-\frac{1}{2 i}\right)
$$

I leave this as an exercise.

References

[Rob55] Herbert Robbins. A remark on stirling's formula. The American mathematical monthly, 62(1):26-29, 1955. 1

