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1 Stirling’s Approximation

Our objective is to prove the following result.

Theorem 1 (Stirling’s approximation, Robbins Formula [Rob55]).
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Before we proceed with the proof, I want to mention the following stronger conjectured bound that I
discovered (numerically); however, I was unable to prove this bound.√
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Let us now proceed with the proof of Robbins formula.

Proof. Our objective is to prove tight upper and lower bounds of the form
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So, we shall obtain bounds of the form
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1. First, the idea is to prove that the following limit exists.
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Since, this sequence also tends to L and is (weakly) increasing, we get that
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3. Similarly, if we prove that the following sequence is (weakly) decreasing{
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These high-level technique is used to derive several tight bounds of this form.

Part 1. Take a look at the video. Then, you can take a look at more formal presentations as well.

Part 2. Let us prove the following
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We substitute ε = 1/(n + 1). Then, we have (n + 1) = 1/ε, n = (1 − ε)/ε and n + 1/2 = (1 − ε/2)/ε.
Therefore, the inequality is equivalent to
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It suffices to prove that, for all i > 2, we have
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Consider the function h(x) = 1
x+1 −

1
2x over the domain x ∈ [2,∞). Our objective is to find its extreme

values. Observe that
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Note that 2x2 > (x+ 1)2 ≡
√

2 > 1 + 1
x , for all integer x > 3. Therefore, h(x) is decreasing in [3,∞).

For integer x > 2, the maximum is achieved at x = 2 or x = 3. Note that h(2) = h(3) = 1
12 . So, for

integer x, we have h(x) 6 1
12 . This observation completes the proof.

Part 3. Let us prove the following
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We substitute ε = 1/(n+ 1). Then, we have 12n+ 13 = (12 + ε)/ε and 12n+ 1 = (12− 11ε)/ε. Therefore,
the LHS becomes
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https://www.youtube.com/watch?v=7PuZQhqkWxk


We know from the above derivation that the RHS is

−
∑
i>2

(
1

i+ 1
− 1

2i

)
εi.
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I leave this as an exercise.
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