Homework 2

Collaborators :

1. Sum of an Interesting Random Variable. (20 points) Let X be the random variable over the set of all natural numbers $\{1, 2, 3, ...\}$ such that, for any natural number i, we have

$$\mathbb{P}\left[\mathbb{X}=i\right]=3^{-i}.$$

Let $\mathbb{S}_n = \mathbb{X}^{(1)} + \mathbb{X}^{(2)} + \cdots + \mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \dots, \mathbb{X}^{(n)}$ are independent and identical to \mathbb{X} .

- (5 points) What is $\mathbb{E}[\mathbb{S}_n]$?
- (15 points) Upper-bound the following probability

$$\mathbb{P}\left[\mathbb{S}_n - \mathbb{E}\left[\mathbb{S}_n\right] \geqslant E\right]$$

- 2. Coin-tossing: Word Problem. (20 points) Suppose you have access to a coin that outputs heads with probability 1/2 and outputs tails with probability 1/2. Let \mathbb{S}_n represent the *number of coin tosses needed* to see exactly *n* heads.
 - (5 points) What is $\mathbb{E}[\mathbb{S}_n]$?
 - (15 points) Upper-bound the following probability

$$\mathbb{E}\left[\mathbb{S}_n - \mathbb{E}\left[\mathbb{S}_n\right] \geqslant E\right]$$

- 3. Sum of Poisson. (25 points) Let \mathbb{Y} be the random variable over sample space $\{0, 1, 2, ...\}$ such that $\Pr[\mathbb{Y} = k] = \frac{e^{-\mu}\mu^k}{k!}$, for all $k \in \{0, 1, 2, ...\}$. This distribution is the *Poisson distribution* with parameter μ .
 - (3 points) Prove that the mean of the "Poisson distribution with parameter μ " is equal to μ .
 - (7 points) Prove that if \mathbb{Y}_1 and \mathbb{Y}_2 are independent Poisson distributions with parameters μ_1 and μ_2 respectively, then the random variable $\mathbb{Y}_1 + \mathbb{Y}_2$ is also a Poisson distribution with parameter $(\mu_1 + \mu_2)$.
 - (15 points) Let X be the Poisson distribution with mean m/n. Let $\mathbb{S}_n := \mathbb{X}^{(1)} + \mathbb{X}^{(2)} + \cdots + \mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are all independent and identical to X. Upper-bound the following probability

$$\mathbb{P}\left[\mathbb{S}_n - \mathbb{E}\left[\mathbb{S}_n\right] \geqslant E\right]$$

4. Another proof for Chernoff bound (15 points) Consider the following simple type of Chernoff Bound:

Suppose $\mathbb{S}_n = \sum_{i=1}^n \mathbb{X}^{(i)}$ where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \dots, \mathbb{X}^{(n)}$ are i.i.d Bernoulli random variables such that, $\mathbb{X} = \text{Bern}(p)$. Then, for any $\varepsilon > 0$, the following Chernoff bound states:

 $\Pr[\mathbb{S}_n \ge n(p+\varepsilon)] \le \exp\left(-n\mathrm{D}_{\mathrm{KL}}\left(p+\varepsilon,p\right)\right).$

To prove the inequality above, we define i.i.d Bernoulli random variables $\mathbb{X}^{\prime(1)}, \mathbb{X}^{\prime(2)}, \ldots, \mathbb{X}^{\prime(n)}$ such that $\mathbb{X}^{\prime} = \text{Bern}(p + \varepsilon)$. Define $\mathbb{S}_{n}^{\prime} := \sum_{i=1}^{n} \mathbb{X}^{\prime(i)}$.

- (3 points) Define $h_k := \frac{\Pr[\mathbb{S}'_n = k]}{\Pr[\mathbb{S}_n = k]}$ and obtain a simplified expression for h_k .
- (7 points) For any $k \ge n(p+\varepsilon)$, prove that $h_k \ge \exp(nD_{\mathrm{KL}}(p+\varepsilon,p))$.
- (5 points) Use the inequality above to prove the Chernoff bound

$$\Pr[\mathbb{S}_n \ge n(p+\varepsilon)] \le \exp\left(-n\mathrm{D}_{\mathrm{KL}}\left(p+\varepsilon,p\right)\right).$$

5. Random Walk in 2-D. (20 points) Suppose an insect starts at (0,0) at time t = 0. At time t, its position is described by $(\mathbb{X}(t), \mathbb{Y}(t))$. At the next time step t + 1, the insect uniformly at random moves to (a) $(\mathbb{X}(t) + 3, \mathbb{Y}(t))$, (b) $(\mathbb{X}(t) - 3, \mathbb{Y}(t))$, (c) $(\mathbb{X}(t), \mathbb{Y}(t) + 3)$, or (d) $(\mathbb{X}(t), \mathbb{Y}(t) - 3)$.

State (5 points) and prove (15 points) a theorem that bounds how far from the origin the insect is at time t = n.

6. Negatively Correlated Random Variables. (20 points) Suppose $\mathbb{X} \colon \Omega \to \mathbb{Z}$ is a discrete random variable. Let $f \colon \mathbb{Z} \to \mathbb{Z}$ and $g \colon \mathbb{Z} \to \mathbb{Z}$ are two increasing and decreasing functions, respectively. Define random variables $\mathbb{R} := f(\mathbb{X})$ and $\mathbb{S} := g(\mathbb{X})$ and assume that $\mathbb{E}[\mathbb{R}^2] < \infty$ and $\mathbb{E}[\mathbb{S}^2] < \infty$. Prove that \mathbb{R} and \mathbb{S} are negatively correlated, i.e., $\mathbb{E}[\mathbb{R} \cdot \mathbb{S}] \leq \mathbb{E}[\mathbb{R}] \cdot \mathbb{E}[\mathbb{S}]$. Solution.

7. Chernoff bound for negatively correlated Bernoulli random variables.

(Extra credit: 15 points)

Consider negatively correlated random variables (X_1, X_2, \ldots, X_n) , such that $X_i \in \{0, 1\}$, for all $i \in \{1, 2, \ldots, n\}$. Define $p_i = \mathbb{E}[X_i]$, for all $i \in \{1, 2, \ldots, n\}$, and $p = (p_1 + p_2 + \cdots + p_n)/n$. Prove that

$$\Pr\left[\sum_{i=1}^{n} X_{i} \ge (p+\varepsilon)n\right] \le \exp\left(-n \cdot \mathcal{D}_{\mathrm{KL}}\left(p+\varepsilon,p\right)\right).$$

Useful facts.

- Binary random variables: Consider an arbitrary random variable $X \in \{0, 1\}$. Note that the random variable X^k is identical to the random variable X, for all $k \in \{1, 2, ...\}$.
- Negative correlation: For any $I \subseteq \{1, 2, ..., n\}$, the negative correlation of $(X_1, X_2, ..., X_n)$ implies that

$$\mathbb{E}\left[\prod_{i\in I}X_i\right]\leqslant\prod_{i\in I}\mathbb{E}\left[X_i\right].$$

• Moment generating function: Note that

$$\exp\left(h\sum_{i=1}^{n}X_{i}\right) = \sum_{k\geq 0}\frac{h^{k}}{k!}\cdot\left(\sum_{i=1}^{n}X_{i}\right)^{k}$$