Homework 2

Collaborators :

1. Sum of an Interesting Random Variable. (20 points) Let \mathbb{X} be the random variable over the set of all natural numbers $\{1,2,3, \ldots\}$ such that, for any natural number i, we have

$$
\mathbb{P}[\mathbb{X}=i]=3^{-i}
$$

Let $\mathbb{S}_{n}=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+\cdots+\mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are independent and identical to \mathbb{X}.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

2. Coin-tossing: Word Problem. (20 points) Suppose you have access to a coin that outputs heads with probability $1 / 2$ and outputs tails with probability $1 / 2$. Let \mathbb{S}_{n} represent the number of coin tosses needed to see exactly n heads.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{E}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

3. Sum of Poisson. (25 points) Let \mathbb{Y} be the random variable over sample space $\{0,1,2, \ldots\}$ such that $\operatorname{Pr}[\mathbb{Y}=k]=\frac{e^{-\mu} \mu^{k}}{k!}$, for all $k \in\{0,1,2, \ldots\}$. This distribution is the Poisson distribution with parameter μ.

- (3 points) Prove that the mean of the "Poisson distribution with parameter μ " is equal to μ.
- (7 points) Prove that if \mathbb{Y}_{1} and \mathbb{Y}_{2} are independent Poisson distributions with parameters μ_{1} and μ_{2} respectively, then the random variable $\mathbb{Y}_{1}+\mathbb{Y}_{2}$ is also a Poisson distribution with parameter $\left(\mu_{1}+\mu_{2}\right)$.
- (15 points) Let \mathbb{X} be the Poisson distribution with mean m / n. Let $\mathbb{S}_{n}:=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+$ $\cdots+\mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are all independent and identical to \mathbb{X}. Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

4. Another proof for Chernoff bound (15 points) Consider the following simple type of Chernoff Bound:

Suppose $\mathbb{S}_{n}=\sum_{i=1}^{n} \mathbb{X}^{(i)}$ where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are i.i.d Bernoulli random variables such that, $\mathbb{X}=\operatorname{Bern}(p)$. Then, for any $\varepsilon>0$, the following Chernoff bound states:

$$
\operatorname{Pr}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right) .
$$

To prove the inequality above, we define i.i.d Bernoulli random variables $\mathbb{X}^{\prime(1)}, \mathbb{X}^{\prime(2)}, \ldots, \mathbb{X}^{\prime(n)}$ such that $\mathbb{X}^{\prime}=\operatorname{Bern}(p+\varepsilon)$. Define $\mathbb{S}_{n}^{\prime}:=\sum_{i=1}^{n} \mathbb{X}^{\prime(i)}$.

- (3 points) Define $h_{k}:=\frac{\operatorname{Pr}\left[\mathbb{S}_{n}^{\prime}=k\right]}{\operatorname{Pr}\left[\mathbb{S}_{n}=k\right]}$ and obtain a simplified expression for h_{k}.
- (7 points) For any $k \geqslant n(p+\varepsilon)$, prove that $h_{k} \geqslant \exp \left(n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)$.
- (5 points) Use the inequality above to prove the Chernoff bound

$$
\operatorname{Pr}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right) .
$$

Solution.

5. Random Walk in 2-D. (20 points) Suppose an insect starts at $(0,0)$ at time $t=0$. At time t, its position is described by $(\mathbb{X}(t), \mathbb{Y}(t))$. At the next time step $t+1$, the insect uniformly at random moves to (a) $(\mathbb{X}(t)+3, \mathbb{Y}(t))$, (b) $(\mathbb{X}(t)-3, \mathbb{Y}(t))$, (c) $(\mathbb{X}(t), \mathbb{Y}(t)+3)$, or (d) $(\mathbb{X}(t), \mathbb{Y}(t)-3)$.
State (5 points) and prove (15 points) a theorem that bounds how far from the origin the insect is at time $t=n$.

Solution.

6. Negatively Correlated Random Variables. (20 points) Suppose $\mathbb{X}: \Omega \rightarrow \mathbb{Z}$ is a discrete random variable. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ are two increasing and decreasing functions, respectively. Define random variables $\mathbb{R}:=f(\mathbb{X})$ and $\mathbb{S}:=g(\mathbb{X})$ and assume that $\mathbb{E}\left[\mathbb{R}^{2}\right]<\infty$ and $\mathbb{E}\left[\mathbb{S}^{2}\right]<\infty$. Prove that \mathbb{R} and \mathbb{S} are negatively correlated, i.e., $\mathbb{E}[\mathbb{R} \cdot \mathbb{S}] \leqslant \mathbb{E}[\mathbb{R}] \cdot \mathbb{E}[\mathbb{S}]$.

Solution.

7. Chernoff bound for negatively correlated Bernoulli random variables.

(Extra credit: 15 points)

Consider negatively correlated random variables $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, such that $X_{i} \in\{0,1\}$, for all $i \in\{1,2, \ldots, n\}$. Define $p_{i}=\mathbb{E}\left[X_{i}\right]$, for all $i \in\{1,2, \ldots, n\}$, and $p=\left(p_{1}+p_{2}+\cdots+p_{n}\right) / n$. Prove that

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \geqslant(p+\varepsilon) n\right] \leqslant \exp \left(-n \cdot \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right) .
$$

Useful facts.

- Binary random variables: Consider an arbitrary random variable $X \in\{0,1\}$. Note that the random variable X^{k} is identical to the random variable X, for all $k \in\{1,2, \ldots\}$.
- Negative correlation: For any $I \subseteq\{1,2, \ldots, n\}$, the negative correlation of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ implies that

$$
\mathbb{E}\left[\prod_{i \in I} X_{i}\right] \leqslant \prod_{i \in I} \mathbb{E}\left[X_{i}\right]
$$

- Moment generating function: Note that

$$
\exp \left(h \sum_{i=1}^{n} X_{i}\right)=\sum_{k \geqslant 0} \frac{h^{k}}{k!} \cdot\left(\sum_{i=1}^{n} X_{i}\right)^{k}
$$

Solution.

