Homework 1

Collaborators :

1. Upper-bound on Entropy. (20 points) Let $\Omega=\{1,2, \ldots, N\}$. Suppose \mathbb{X} is a random variable over the sample space Ω. For shorthand, let $p_{i}=\mathbb{P}[\mathbb{X}=i]$, for each $i \in \Omega$. The random variable X 's entropy is defined as the following function.

$$
H(\mathbb{X}):=\sum_{i \in \Omega}-p_{i} \cdot \ln p_{i}
$$

Use Jensen's inequality on the function $f(t)=\ln t$ to prove the following inequality.

$$
H(\mathbb{X}) \leqslant \ln N
$$

Furthermore, equality holds if and only if \mathbb{X} is the uniform distribution over Ω.

Solution.

2. Log-sum Inequality. $(27=22+5$ points $)$
(a) Let $\left\{a_{1}, \ldots, a_{N}\right\}$ and $\left\{b_{1}, \ldots, b_{N}\right\}$ be two sets of positive real numbers. Use Jensen's inequality to prove the following inequality.

$$
\sum_{i=1}^{N} a_{i} \ln \frac{a_{i}}{b_{i}} \geqslant A \ln \frac{A}{B},
$$

where $A:=\sum_{i=1}^{N} a_{i}$ and $B:=\sum_{i=1}^{N} b_{i}$. Furthermore, equality holds if and only if a_{i} / b_{i} is identical for all $i \in\{1, \ldots, N\}$.

Solution.

(b) Let \mathcal{X} be a finite set and $P: \mathcal{X} \rightarrow[0,1]$ and $Q: \mathcal{X} \rightarrow[0,1]$ be two probability distributions on \mathcal{X} such that for any $x \in \mathcal{X}, Q(x) \neq 0$. The relative entropy from Q to P is defined as follows:

$$
\mathrm{D}_{\mathrm{KL}}(P \| Q):=\sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)} .
$$

Show that for any P and Q, it holds that $\mathrm{D}_{\mathrm{KL}}(P \| Q) \geqslant 0$. Moreover, state when $\mathrm{D}_{\mathrm{KL}}(P \| Q)=0$.

Solution.

3. Approximating Square-root. (20 points) Our objective is to find a (meaningful and tight) lower bound for the function $f(x)=(1-x)^{-1 / 2}$ when $x \in[0,1)$ using a quadratic function of the form

$$
g(x)=1+\alpha x+\beta x^{2} .
$$

Use the Lagrange form of Taylor's remainder theorem on $f(x)$ around $x=0$ to obtain the function $g(x)$.

Solution.

4. Lower-bounding Logarithm Function. (20 points) By Taylor's Theorem, we have seen that the following upper bound is true.

For all $\varepsilon \in[0,1)$ and integer $k \geqslant 1$, we have

$$
\ln (1-\varepsilon) \leqslant-\varepsilon-\frac{\varepsilon^{2}}{2}-\cdots-\frac{\varepsilon^{k}}{k}
$$

We want a tight lower bound for $\ln (1-\varepsilon)$. Prove the following lower-bound.
For all $\varepsilon \in[0,1 / 2]$ and integer $k \geqslant 1$, we have

$$
\ln (1-\varepsilon) \geqslant\left(-\varepsilon-\frac{\varepsilon^{2}}{2}-\cdots-\frac{\varepsilon^{k}}{k}\right)-\frac{\varepsilon^{k}}{k}
$$

(For visualization of this bound, follow this link)

Solution.

5. Using Stirling Approximation. (23 points) Suppose we have a coin that outputs heads with probability p and outputs tails with probability $q=1-p$. We toss this coin (independently) n times and record each outcome. Let \mathbb{H} be the random variable representing the number of heads in this experiment. Note that the following expression gives the probability that we get a total of k heads.

$$
\mathbb{P}[\mathbb{H}=k]=\binom{n}{k} p^{k} q^{n-k}
$$

We will prove upper and lower bounds for this problem, assuming $k \geqslant p n$. Define $p^{\prime}:=k / n=$ $(p+\varepsilon)$.
Let P and P^{\prime} be two probability distributions on the set $\mathcal{X}=\{$ tails, heads $\}$ such that $\mathbb{P}(P=$ heads $)=p$ and $\mathbb{P}\left(P^{\prime}=\right.$ heads $)=p^{\prime}$.
Using the (Robbin's form of) Stirling approximation in the lecture notes, prove the following bound.
$\frac{1}{\sqrt{8 n p^{\prime}\left(1-p^{\prime}\right)}} \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(P^{\prime} \| P\right)\right) \leqslant \mathbb{P}[\mathbb{H}=k] \leqslant \frac{1}{\sqrt{2 \pi n p^{\prime}\left(1-p^{\prime}\right)}} \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(P^{\prime} \| P\right)\right)$,
where $\mathrm{D}_{\mathrm{KL}}\left(P^{\prime} \| P\right)$ is the relative entropy from P to P^{\prime} defined in question 3.

Solution.

6. Computing a limit. (20 points) Compute the following limit

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{\sqrt{4 n^{2}-j^{2}}}{n^{2}}
$$

Solution.

7. Birthday Bound. (20 points) Intuitively, we want to claim that the following two expressions are "good approximations" of each other.

$$
f_{n}(t):=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{t-1}{n}\right)
$$

And

$$
g_{n}(t):=\exp \left(-\frac{t^{2}}{2 n}\right)
$$

To formalize this intuition, write the mathematical theorems (and then prove them) when $t=o\left(n^{2 / 3}\right)$.
Hint: You may find the following inequalities helpful.
(a) $\ln (1-x) \leqslant-x$, for $x \in[0,1)$, and
(b) $\ln (1-x) \geqslant-x-x^{2}$, for $x \in[0,1 / 2]$ (you already prove this identity earlier).
8. Tight Estimation: Central Binomial Coefficient. (Extra credit: 15 points) We will learn a new powerful technique to prove tight inequalities. As a representative example, we will estimate the central binomial coefficient. For positive integer n, we will prove that

$$
L_{n} \leqslant\binom{ 2 n}{n} \leqslant U_{n}
$$

where

$$
L_{n}:=\frac{4^{n}}{\sqrt{\pi\left(n+\frac{1}{4}+\frac{1}{32 n}\right)}} \quad U_{n}:=\frac{4^{n}}{\sqrt{\pi\left(n+\frac{1}{4}+\frac{1}{46 n}\right)}} .
$$

To prove these bounds, we will use the following general strategy.
(a) Define the following two sequences

$$
\left\{a_{n}:=\binom{2 n}{n} / U_{n}\right\}_{n} \quad\left\{b_{n}:=\binom{2 n}{n} / L_{n}\right\}_{n}
$$

(b) Prove the following limit.

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\binom{2 n}{n}}{4^{n} / \sqrt{\pi n}}=1,
$$

using the Stirling approximation $n!\sim \sqrt{2 \pi n} \cdot(n / \mathrm{e})^{n}$.
(c) Prove $\left\{a_{n}\right\}_{n}$ is an increasing sequence.
(d) From (b) and (c), conclude that $a_{n} \leqslant 1$, implying $\binom{2 n}{n} \leqslant U_{n}$.
(e) Prove $\left\{b_{n}\right\}_{n}$ is a decreasing sequence.
(f) From (b) and (e), conclude that $b_{n} \geqslant 1$, implying $\binom{2 n}{n} \geqslant L_{n}$.

Remark: What did we achieve from this exercise? We started from the asymptotic estimate $\binom{2 n}{n} \sim 4^{n} / \sqrt{\pi n}$. From this asymptotic estimate, we obtained explicit upper and lower bounds. We learned a powerful general technique to translate asymptotic estimates into explicit upper and lower bounds automatically.

Solution.

