Lecture 27: Hypercontractivity

Hypercontractivity

→ 御 ▶ → 注 ▶ → 注 ▶

э

• Today, we shall learn about an advanced tool in Fourier Analysis called Hypercontractivity. We shall see the theorem and a few of its applications. However, we shall not see the proof

・行き ・ モン・

• For $p \ge 1$ and any function $f \colon \{0,1\}^n \to \mathbb{R}$, we define

$$L_p(f) := \left(\frac{1}{N} \sum_{x \in \{0,1\}^n} |f(x)|^p\right)^{1/p}$$

• There are two interesting properties of the $L_p(\cdot)$ norm

Lemma (Monotonicity of Norm)

For $1 \leq p < q$ and $f : \{0,1\}^n \to \mathbb{R}$ we have

 $L_p(f) \leq L_q(f)$

Moreover, equality holds if and only if f is a constant function

Hypercontractivity

- 4 同 ト 4 日 ト 4 日 ト

• Further, we also have the "Contractivity Property." The smoothed version of the function has a smaller norm than the original function.

Lemma (Contractivity)

For $p \ge 1$ and $\rho \in [0,1]$, we have

 $L_p(T_\rho(f)) \leq L_p(f)$

Equality holds if (and only if) $\rho = 0$ or f is a constant function.

Hypercontractivity

▲御 ▶ ▲ 国 ▶ ▲ 国 ▶

• By the "contractivity property" we know that

 $L_p(T_\rho(f)) \leq L_p(f)$

• By monotonicity of norm, we know that

$$L_p(T_\rho(f)) \leq L_q(T_\rho(f)),$$

where q > p

- However, how does $L_p(f)$ compare with $L_q(T_p(f))$?
- Answer: It depends.
- Hypercontractivity. Even the q-th norm of T_ρ(f) is smaller than the p-th norm of f if ρ ≤ √(p-1)/(q-1).

★@▶ ★ E▶ ★ E▶ = E

Hypercontractivity

• Formally, we have the following result

Theorem (Hypercontractivity)

Let $f: \{0,1\}^n \to \mathbb{R}$ be an arbitrary function. For $1 \le p < q$ and $\rho \le \sqrt{\frac{p-1}{q-1}}$ we have

 $L_q(T_\rho(f)) \leqslant L_p(f)$

Proof Outline.

- Prove the statement for 1 ≤ p < q = 2 (The proof of this statement proceeds by induction on n and the base case of n = 1 is the toughest case)
- Reduce the proof of the statement for the case $2 \le p < q$ to the case of $1 \le p < q = 2$ (using Hölder's inequality)
- Reduce the proof of the statement for the case 1 ≤ p < 2 < q to the two cases above (using the homomorphic property of the noise operator)

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Special Case of q = 2

- Let us state the hypercontractivity theorem for the special case of $1 \leqslant p < q = 2$
- Suppose $p = 1 + \delta$, where $\delta \in [0, 1)$

• Suppose
$$\rho = \sqrt{\frac{p-1}{q-1}} = \delta^{1/2}$$

• The hypercontractivity theorem states that

$$L_2(T_\rho(f)) \leqslant L_p(f)$$

• Squaring both sides and applying Parseval's identity to the LHS, we get

$$\sum_{S \in \{0,1\}^n} \delta^{|S|} \widehat{f}(S)^2 \leqslant \left(\frac{1}{N} \sum_{x \in \{0,1\}^n} \left| f(x) \right|^{1+\delta} \right)^{2/1+\delta}$$

イロト イポト イヨト イヨト

KKL Lemma

- Let f: {0,1}ⁿ → {+1,0,-1}. Recall that we denoted the Boolean functions by functions with range {+1,-1}. Suppose we want to denote boolean functions only defined on a subset of {0,1}ⁿ. In this case, we use functions {0,1}ⁿ → {+1,0,-1}. Wherever the function is not defined, it evaluates to 0; otherwise, it takes value ∈ {+1,-1}.
- The KKL in "KKL Lemma" stands for "Kahn-Kalai-Linial"
- Note that, for a function $f: \{0,1\}^n \to \{+1,0,-1\}$, we have

$$L_p(f) = \mathbb{P}\left[f(x) \neq 0 \colon x \stackrel{\$}{\leftarrow} \{0,1\}^n\right]^{1/p}$$

< 回 > < E > < E > <

• From the hypercontractivity theorem, we directly have the KKL Lemma

Lemma (KKL Lemma)

For any function $f \colon \{0,1\}^n \to \{+1,0,-1\}$ and $\delta \in [0,1)$ we have

$$\sum_{S \in \{0,1\}^n} \delta^{|S|} \widehat{f}(S)^2 \leqslant \mathbb{P}\left[f(x) \neq 0 \colon x \stackrel{s}{\leftarrow} \{0,1\}^n\right]^{2/1+\delta}$$

Intuition. Note that the RHS is ≪ P [f(x) ≠ 0: x ← {0,1}ⁿ] because δ < 1, i.e., the ratio of the support of f to the size of the entire sample space N.
On the other hand, the LHS is dominated by the Fourier.

On the other hand, the LHS is dominated by the Fourier coefficients on *S* that have small support.

▲御▶ ▲臣▶ ▲臣≯

So, the inequality states that the total mass of the Fourier coefficients on S that have a small support is \ll the ratio of the support of f to the size of the entire sample space N. Effectively, this lemma states that if a boolean function has a small support, then most of its mass of the Fourier coefficients is on the S that has a large support.

 In the next lecture, we shall prove a formal result that makes this intuition concrete. We shall show that the uniform distribution on any large subset A ⊆ {0,1}ⁿ fools most large linear tests.

伺 ト イヨ ト イヨ ト