
Lecture 26: Left-over Hash Lemma &
Bonami-Beckner Noise Operator
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Objective I

Suppose we have access to a sample from a probability
distribution X that only has very weak randomness guarantee.
For example, X is a probability distribution over the sample
space {0, 1}n such that H∞(X ) > k . That is, the output of X
is very unpredictable and for all x ∈ {0, 1}n

P [X = x ] 6
1
2k

=
1
K

Our objective is to generate uniform random bits from any
distribution with H∞(X) > k
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Deterministic Extraction I

Ideally, we will prefer to have one function
f : {0, 1}n → {0, 1}m such that it can its output f (X) is close
to the uniform distribution Um (the uniform distribution over
{0, 1}m)
However, we shall show that it is impossible that one function
can extract random bits from all high min-entropy sources.
This impossibility is in the strongest possible sense.

We shall show that for every extraction function
f : {0, 1}n → {0, 1}, there exists a min-entropy source X such
that H∞(X) > n − 1 such that f (X) is constant. We cannot
even extract one random bit from sources with (n − 1)
min-entropy.
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Deterministic Extraction II

The proof is as follows. Consider S0 = f −1(0) and
S1 = f −1(1). Note that either S0 or S1 has at least 2n−1

entries. Suppose without loss of generality, |S0| > 2n−1.
Consider X, the uniform distribution over the set S0. Note
that P [X = x ] 6 1

2n−1 . We have H∞(X) > n − 1.
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Universal Hash Function Family

Definition (Universal Hash Function Family)

Let H = {h1, h2, . . . , hα} be a collection of hash functions such
that, for each 1 6 i 6 α, we have hi : {0, 1}n → {0, 1}m. Let H be
a probability distribution over the hash functions in H. The family
H is a universal hash function family with respect to the probability
distribution H if it satisfies the following condition. For all distinct
inputs x , x ′ ∈ {0, 1}n, we have

P
[
h(x) = h(x ′) : h ∼ H

]
6

1
2m

=
1
M
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Left-over Hash Lemma I

Recall that we have seen that it is impossible for a
deterministic function to extract even one random bit from
sources with (n − 1) bits of min-entropy.

We shall now show that choosing a hash function from a
universal hash function family suffices

Theorem (Left-over Hash Lemma)

Let H be a universal hash function family {0, 1}n → {0, 1}m with
respect to the probability distribution H over H. Let X be any
min-entropy source over {0, 1}n such that H∞(X) > k . Then, we
have

SD
(
(H(X),H), (Um,H)

)
6

1
2

√
M

K
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Left-over Hash Lemma II

Remark. Note that we are claiming that H(X) is close to the
uniform distribution Um over {0, 1}m even given the hash
function H.
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Left-over Hash Lemma III

The proof proceeds in the following steps.

2SD
(
(H(X),H), (Um,H)

)
=E

[
2SD

(
(H(X)|H = h), (Um|H = h)

)
: h ∼ H

]
=E

[
2SD

(
h(X),Um

)
: h ∼ H

]
6E

[
`2

(
Biash(X) − BiasUm

)
: h ∼ H

]

=E

√ ∑
S∈{0,1}m

Biash(X)(S)2 − 1 : h ∼ H



6

√√√√√√E

 ∑
S∈{0,1}m

Biash(X)(S)2 − 1 : h ∼ H
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Left-over Hash Lemma IV

The last inequality is due to Jensen’s inequality.

Let us continue our simplification.

2SD
(
(H(X),H), (Um,H)

)
6

√√√√√√E

 ∑
S∈{0,1}m

Biash(X)(S)2 − 1 : h ∼ H



=

√√√√√√E

 ∑
S∈{0,1}m

Biash(X)(S)2 : h ∼ H

− 1

=

√
E
[
M · Col

(
h(X), h(X)

)
: h ∼ H

]
− 1
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Left-over Hash Lemma V

Note that one sample of h(X) collides with a second sample of
h(X) due to the following cases

1 The first sample of X collides with the second sample of X.
Since, H∞(X) > k , we have

Col(X,X) 6
1
K

2 If the first and the second samples from X are different, then
they collide with probability 6 1

M when h ∼ H.

Overall, by union bound, we get that

E
[
Col

(
h(X), h(X)

)
: h ∼ H

]
6

1
K

+
1
M
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Left-over Hash Lemma VI

Substituting this estimation, we obtain

2SD
(
(H(X),H), (Um,H)

)
6

√
E
[
M · Col

(
h(X), h(X)

)
: h ∼ H

]
− 1

=

√
M ·

(
1
K

+
1
M

)
− 1 =

√
M

K

Note that this result says that we must ensure m < k for the
output of the extraction to be close to the uniform distribution
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Overview

Today, we shall introduce the basics of the “noise operator”
This operator is crucial to one of the most powerful technical
tools in Fourier Analysis, namely, the Hypercontractivity

LHL



Noise Operator

Let Nε be a probability distribution over the sample space
{0, 1}n such that

P [Nε = x ] = (1− ε)n−|x |ε|x |

Here |x | represents the number of 1s in x (or, equivalently, the
Hamming weight of x)
Intuitively, imagine a channel through which 0n is fed as input.
The channel converts each bit independently as follows. It
converts 0 7→ 1 with probability ε; and 1 7→ 0 with probability
(1− ε). Note that the probability of the output being x is
(1− ε)n−|x |ε|x |

Our objective is to prove that

BiasNε(S) = (1− 2ε)|S |

We shall prove this result using a highly modular and elegant
approach
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Computation of the Bias I

For 1 6 i 6 n, let Nε,i be the probability distribution defined
below

P
[
Nε,i = x

]
=


(1− ε), if x = 0n

ε, if x = δi

0, otherwise

Intuitively, 0n is fed through a channel. All bits except the i-th
bit are left unchanged. The i-th bit is converted as follows. It
maps 0 7→ 1 with probability ε; and 0 7→ 0 with probability
(1− ε).

LHL



Computation of the Bias II

Let us compute the bias of this distribution. For any
S ∈ {0, 1}n, note that, if Si = 0, we have

BiasNε,i
(S) = 1

For any S ∈ {0, 1}, if Si = 1, we have

BiasNε,i
(S) = (1− ε)− ε = (1− 2ε)

Succinctly, we can express this as

BiasNε,i
(S) = (1− 2ε)Si

So, we can conclude that

Bias⊕n
i=1 Nε,i

(S) = (1− 2ε)
∑n

i=1 Si = (1− 2ε)|S |

It is left as an exercise to prove that the distribution Nε is
identical to the distribution

⊕n
i=1 Nε,i
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Noisy Version of a Function

Let f : {0, 1}n → R be any function
Define the noisy version of f as follows

f̃ (x) = Tρ(x) := E
[
f (x + e) : e ∼ Nε

]
,

where ρ = 1− 2ε
So, we have

f̃ (x) =
∑

e∈{0,1}n
Nε(e)f (x + e) = N(Nε ∗ f )

Equivalently, we have f̃ = Nε ⊕ f (we emphasize that f need
not be a probability distribution to use the notation of ⊕ of
two functions)
Therefore, we get

Bias
f̃
(S) = BiasNε(S) · Biasf (S) = ρ|S |Biasf (S)

That is, we conclude that

T̂ρ(f )(S) = ρ|S |f̂ (S)
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