Lecture 26: Left-over Hash Lemma \&
Bonami-Beckner Noise Operator

Objective

- Suppose we have access to a sample from a probability distribution \mathbb{X} that only has very weak randomness guarantee. For example, \mathbb{X} is a probability distribution over the sample space $\{0,1\}^{n}$ such that $\mathrm{H}_{\infty}(X) \geqslant k$. That is, the output of \mathbb{X} is very unpredictable and for all $x \in\{0,1\}^{n}$

$$
\mathbb{P}[\mathbb{X}=x] \leqslant \frac{1}{2^{k}}=\frac{1}{K}
$$

- Our objective is to generate uniform random bits from any distribution with $\mathrm{H}_{\infty}(\mathbb{X}) \geqslant k$

Deterministic Extraction

- Ideally, we will prefer to have one function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ such that it can its output $f(\mathbb{X})$ is close to the uniform distribution \mathbb{U}_{m} (the uniform distribution over $\{0,1\}^{m}$)
- However, we shall show that it is impossible that one function can extract random bits from all high min-entropy sources. This impossibility is in the strongest possible sense.
- We shall show that for every extraction function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, there exists a min-entropy source \mathbb{X} such that $\mathrm{H}_{\infty}(\mathbb{X}) \geqslant n-1$ such that $f(\mathbb{X})$ is constant. We cannot even extract one random bit from sources with $(n-1)$ min-entropy.
- The proof is as follows. Consider $S_{0}=f^{-1}(0)$ and $S_{1}=f^{-1}(1)$. Note that either S_{0} or S_{1} has at least 2^{n-1} entries. Suppose without loss of generality, $\left|S_{0}\right| \geqslant 2^{n-1}$. Consider \mathbb{X}, the uniform distribution over the set S_{0}. Note that $\mathbb{P}[\mathbb{X}=x] \leqslant \frac{1}{2^{n-1}}$. We have $\mathrm{H}_{\infty}(\mathbb{X}) \geqslant n-1$.

Universal Hash Function Family

Definition (Universal Hash Function Family)

Let $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{\alpha}\right\}$ be a collection of hash functions such that, for each $1 \leqslant i \leqslant \alpha$, we have $h_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Let \mathbb{H} be a probability distribution over the hash functions in \mathcal{H}. The family \mathcal{H} is a universal hash function family with respect to the probability distribution \mathbb{H} if it satisfies the following condition. For all distinct inputs $x, x^{\prime} \in\{0,1\}^{n}$, we have

$$
\mathbb{P}\left[h(x)=h\left(x^{\prime}\right): h \sim \mathbb{H}\right] \leqslant \frac{1}{2^{m}}=\frac{1}{M}
$$

- Recall that we have seen that it is impossible for a deterministic function to extract even one random bit from sources with $(n-1)$ bits of min-entropy.
- We shall now show that choosing a hash function from a universal hash function family suffices

Theorem (Left-over Hash Lemma)

Let \mathcal{H} be a universal hash function family $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ with respect to the probability distribution \mathbb{H} over \mathcal{H}. Let \mathbb{X} be any min-entropy source over $\{0,1\}^{n}$ such that $\mathrm{H}_{\infty}(\mathbb{X}) \geqslant k$. Then, we have

$$
\mathrm{SD}\left((\mathbb{H}(\mathbb{X}), \mathbb{H}),\left(\mathbb{U}_{m}, \mathbb{H}\right)\right) \leqslant \frac{1}{2} \sqrt{\frac{M}{K}}
$$

- Remark. Note that we are claiming that $\mathbb{H}(\mathbb{X})$ is close to the uniform distribution \mathbb{U}_{m} over $\{0,1\}^{m}$ even given the hash function \mathbb{H}.
- The proof proceeds in the following steps.

$$
\begin{aligned}
& 2 \mathrm{SD}\left((\mathbb{H}(\mathbb{X}), \mathbb{H}),\left(\mathbb{U}_{m}, \mathbb{H}\right)\right) \\
= & \mathbb{E}\left[2 \mathrm{SD}\left((\mathbb{H}(\mathbb{X}) \mid \mathbb{H}=h),\left(\mathbb{U}_{m} \mid \mathbb{H}=h\right)\right): h \sim \mathbb{H}\right] \\
= & \mathbb{E}\left[2 \mathrm{SD}\left(h(\mathbb{X}), \mathbb{U}_{m}\right): h \sim \mathbb{H}\right] \\
\leqslant & \mathbb{E}\left[\ell_{2}\left(\operatorname{Bias}_{h(\mathbb{X})}-\operatorname{Bias}_{U_{m}}\right): h \sim \mathbb{H}\right] \\
= & \mathbb{E}\left[\sqrt{\sum_{S \in\{0,1\}^{m}} \operatorname{Bias}_{h(\mathbb{X})}(S)^{2}-1}: h \sim \mathbb{H}\right] \\
\leqslant & \sqrt{\mathbb{E}\left[\sum_{S \in\{0,1\}^{m}} \operatorname{Bias}_{h(\mathbb{X})}(S)^{2}-1: h \sim \mathbb{H}\right]}
\end{aligned}
$$

The last inequality is due to Jensen's inequality.

- Let us continue our simplification.

$$
\begin{aligned}
& 2 \mathrm{SD}\left((\mathbb{H}(\mathbb{X}), \mathbb{H}),\left(\mathbb{U}_{m}, \mathbb{H}\right)\right) \\
\leqslant & \sqrt{\mathbb{E}\left[\sum_{S \in\{0,1\}^{m}} \operatorname{Bias}_{h(\mathbb{X})}(S)^{2}-1: h \sim \mathbb{H}\right]} \\
= & \sqrt{\mathbb{E}\left[\sum_{S \in\{0,1\}^{m}} \operatorname{Bias}_{h(\mathbb{X})}(S)^{2}: h \sim \mathbb{H}\right]-1} \\
= & \sqrt{\mathbb{E}[M \cdot \operatorname{Col}(h(\mathbb{X}), h(\mathbb{X})): h \sim \mathbb{H}]-1}
\end{aligned}
$$

- Note that one sample of $h(\mathbb{X})$ collides with a second sample of $h(\mathbb{X})$ due to the following cases
(1) The first sample of \mathbb{X} collides with the second sample of \mathbb{X}.

Since, $\mathrm{H}_{\infty}(\mathbb{X}) \geqslant k$, we have

$$
\operatorname{Col}(\mathbb{X}, \mathbb{X}) \leqslant \frac{1}{K}
$$

(2) If the first and the second samples from \mathbb{X} are different, then they collide with probability $\leqslant \frac{1}{M}$ when $h \sim \mathbb{H}$.
Overall, by union bound, we get that

$$
\mathbb{E}[\operatorname{Col}(h(\mathbb{X}), h(\mathbb{X})): h \sim \mathbb{H}] \leqslant \frac{1}{K}+\frac{1}{M}
$$

- Substituting this estimation, we obtain

$$
\begin{aligned}
& 2 \mathrm{SD}\left((\mathbb{H}(\mathbb{X}), \mathbb{H}),\left(\mathbb{U}_{m}, \mathbb{H}\right)\right) \\
\leqslant & \sqrt{\mathbb{E}[M \cdot \operatorname{Col}(h(\mathbb{X}), h(\mathbb{X})): h \sim \mathbb{H}]-1} \\
= & \sqrt{M \cdot\left(\frac{1}{K}+\frac{1}{M}\right)-1}=\sqrt{\frac{M}{K}}
\end{aligned}
$$

- Note that this result says that we must ensure $m<k$ for the output of the extraction to be close to the uniform distribution

Overview

- Today, we shall introduce the basics of the "noise operator"
- This operator is crucial to one of the most powerful technical tools in Fourier Analysis, namely, the Hypercontractivity

Noise Operator

- Let \mathbb{N}_{ε} be a probability distribution over the sample space $\{0,1\}^{n}$ such that

$$
\mathbb{P}\left[\mathbb{N}_{\varepsilon}=x\right]=(1-\varepsilon)^{n-|x|} \varepsilon^{x \mid}
$$

Here $|x|$ represents the number of 1 s in x (or, equivalently, the Hamming weight of x)

- Intuitively, imagine a channel through which 0^{n} is fed as input. The channel converts each bit independently as follows. It converts $0 \mapsto 1$ with probability ε; and $1 \mapsto 0$ with probability $(1-\varepsilon)$. Note that the probability of the output being x is $(1-\varepsilon)^{n-|x|} \varepsilon^{|x|}$
- Our objective is to prove that

$$
\operatorname{Bias}_{\mathbb{N}_{\varepsilon}}(S)=(1-2 \varepsilon)^{S \mid}
$$

We shall prove this result using a highly modular and elegant approach

Computation of the Bias

- For $1 \leqslant i \leqslant n$, let $\mathbb{N}_{\varepsilon, i}$ be the probability distribution defined below

$$
\mathbb{P}\left[\mathbb{N}_{\varepsilon, i}=x\right]= \begin{cases}(1-\varepsilon), & \text { if } x=0^{n} \\ \varepsilon, & \text { if } x=\delta_{i} \\ 0, & \text { otherwise }\end{cases}
$$

- Intuitively, 0^{n} is fed through a channel. All bits except the i-th bit are left unchanged. The i-th bit is converted as follows. It maps $0 \mapsto 1$ with probability ε; and $0 \mapsto 0$ with probability $(1-\varepsilon)$.

Computation of the Bias

- Let us compute the bias of this distribution. For any $S \in\{0,1\}^{n}$, note that, if $S_{i}=0$, we have

$$
\operatorname{Bias}_{\mathbb{N}_{\varepsilon, i}}(S)=1
$$

For any $S \in\{0,1\}$, if $S_{i}=1$, we have

$$
\operatorname{Bias}_{\mathbb{N}_{\varepsilon, i}}(S)=(1-\varepsilon)-\varepsilon=(1-2 \varepsilon)
$$

- Succinctly, we can express this as

$$
\operatorname{Bias}_{\mathbb{N}_{\varepsilon, i}}(S)=(1-2 \varepsilon)^{S_{i}}
$$

- So, we can conclude that

$$
\operatorname{Bias}_{\oplus_{i=1}^{n} \mathbb{N}_{\varepsilon, i}}(S)=(1-2 \varepsilon)^{\sum_{i=1}^{n} S_{i}}=(1-2 \varepsilon)^{|S|}
$$

- It is left as an exercise to prove that the distribution \mathbb{N}_{ε} is identical to the distribution $\bigoplus_{i=1}^{n} \mathbb{N}_{\varepsilon, i}$

Noisy Version of a Function

- Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be any function
- Define the noisy version of f as follows

$$
\widetilde{f}(x)=T_{\rho}(x):=\mathbb{E}\left[f(x+e): e \sim \mathbb{N}_{\varepsilon}\right]
$$

where $\rho=1-2 \varepsilon$

- So, we have

$$
\widetilde{f}(x)=\sum_{e \in\{0,1\}^{n}} \mathbb{N}_{\varepsilon}(e) f(x+e)=N\left(\mathbb{N}_{\varepsilon} * f\right)
$$

Equivalently, we have $\widetilde{f}=\mathbb{N}_{\varepsilon} \oplus f$ (we emphasize that f need not be a probability distribution to use the notation of \oplus of two functions)

- Therefore, we get

$$
\operatorname{Bias}_{\tilde{f}}(S)=\operatorname{Bias}_{\mathbb{N}_{\varepsilon}}(S) \cdot \operatorname{Bias}_{f}(S)=\rho^{S \mid} \operatorname{Bias}_{f}(S)
$$

- That is, we conclude that

$$
\widehat{T_{\rho}(f)}(S)=\rho^{S \mid} \widehat{f}(S)
$$

