Lecture 25: Min-Entropy Extraction via Small-bias Masking

• For a probability distribution \mathbb{X} over $\{0,1\}^n$, we defined the bias of \mathbb{X} with respect to a linear test $S \in \{0,1\}^n$ as follows

$$\operatorname{Bias}_{\mathbb{X}}(S) = \mathbb{P}\left[S \cdot \mathbb{X} = 0\right] - \mathbb{P}\left[S \cdot \mathbb{X} = 1\right]$$

 \bullet The probability that two independent samples from $\mathbb X$ and $\mathbb Y$ turn out to be identical is defined as

$$\operatorname{Col}(\mathbb{X},\mathbb{Y}) = rac{1}{N} \sum_{S \in \{0,1\}^n} \operatorname{Bias}_{\mathbb{X}}(S) \operatorname{Bias}_{\mathbb{Y}}(S)$$

• $\mathbb{X} \oplus \mathbb{Y}$ is a probability distribution over $\{0,1\}^n$ such that $\mathbb{P}\left[\mathbb{X} \oplus \mathbb{Y} = z\right]$ is the probability that two samples according to \mathbb{X} and \mathbb{Y} add up to z

$$\operatorname{Bias}_{\mathbb{X} \oplus \mathbb{Y}} = \operatorname{Bias}_{\mathbb{X}} \cdot \operatorname{Bias}_{\mathbb{Y}}$$

• The statistical distance between two probability distributions \mathbb{X} and \mathbb{Y} over the sample space $\{0,1\}^n$ is

$$2\mathrm{SD}\left(\mathbb{X},\mathbb{Y}\right) = \sum_{x \in \left\{0,1\right\}^n} \left| \mathbb{P}\left[\mathbb{X} = x\right] - \mathbb{P}\left[\mathbb{Y} = x\right] \right|$$

We showed that

$$2SD(X, Y) \leq \ell_2(Bias_X - Bias_Y)$$

Example 1

- Let $\mathbb U$ represent the uniform distribution over the sample space $\{0,1\}^n$
- Note that, we have

$$\operatorname{Bias}_{\mathbb{U}}(S) = egin{cases} 1, & \text{if } S = 0 \\ 0, & \text{if } S
eq 0 \end{cases}$$

• In fact, $\mathrm{Bias}_{\mathbb{X}}(0)=1$ for all probability distributions \mathbb{X}

- Let $\mathbb{U}_{\langle v \rangle}$, for $v \in \{0,1\}^n$, represent the uniform distribution over the vector space spanned by $\{v\}$, i.e., the set $\{0,v\}$
- Let $\mathbb{U}_{\langle w \rangle}$, for $w \in \{0,1\}^n$, represent the uniform distribution over the vector space spanned by $\{w\}$, i.e., the set $\{0,w\}$
- Prove: $\mathbb{U}_{\langle v \rangle} \oplus \mathbb{U}_{\langle w \rangle} = \mathbb{U}_{\langle v, w \rangle}$. Here, $\mathbb{U}_{\langle v, w \rangle}$ represents the uniform distribution over the set spanned by $\{v, w\}$. If v = w, then $\langle v, w \rangle = \{0, v\}$; otherwise $\langle v, w \rangle = \{0, v, w, v + w\}$.
- In general, for linearly independent vectors $v_1, v_2, \dots, v_k \in \{0, 1\}^n$, we have

$$\mathbb{U}_{\langle \nu_1, \dots, \nu_k \rangle} = \mathbb{U}_{\langle \nu_1 \rangle} \oplus \dots \oplus \mathbb{U}_{\langle \nu_k \rangle}$$

So, we conclude that

$$\operatorname{Bias}_{\mathbb{U}_{\langle v_1, \dots, v_k \rangle}} = \operatorname{Bias}_{\mathbb{U}_{\langle v_1 \rangle}} \cdots \operatorname{Bias}_{\mathbb{U}_{\langle v_k \rangle}}$$

- Prove: There exists a subset $T \subseteq \{0,1\}^n$ of size 2^{n-1} such that $\mathrm{Bias}_{\mathbb{U}_{(v)}}(S) = 1$ if $S \in T$; otherwise $\mathrm{Bias}_{\mathbb{U}_{(v)}}(S) = 0$.
- Think: Which S have $\operatorname{Bias}_{\mathbb{U}_{\langle v \rangle} \oplus \mathbb{U}_{\langle w \rangle}}(S) = 0$?

- Let \mathbb{X} be a distribution over the sample space $\{0,1\}^n$
- We say that the distribution \mathbb{X} has min-entropy at least k if it satisfies the following condition. For any $x \in \{0,1\}^n$, we have

$$\mathbb{P}\left[\mathbb{X}=x\right]\leqslant\frac{1}{2^{k}}=:\frac{1}{K}$$

This constraint is succinctly represented as $H_{\infty}(\mathbb{X})\geqslant k$

• Intuition: The probability of any element according to the distribution $\mathbb X$ is small. So, the outcome of $\mathbb X$ is "highly unpredictable." Furthermore, $\mathbb X$ associates non-zero probability to at least K elements in $\{0,1\}^n$.

 We had seen that the collision probability of a high min-entropy distribution is low.

$$\operatorname{Col}(\mathbb{X},\mathbb{X}) = \sum_{x \in \{0,1\}^n} \mathbb{P}\left[\mathbb{X} = x\right]^2 \leqslant \sum_{x \in \{0,1\}^n} \mathbb{P}\left[\mathbb{X} = x\right] \frac{1}{K} = \frac{1}{K}$$

This implies that

$$\sum_{S \in \{0,1\}^n} \operatorname{Bias}_{\mathbb{X}}(S)^2 \leqslant \frac{N}{K}$$

Or, equivalently, we write

$$\sum_{S \in \{0,1\}^n: \ S \neq 0} \operatorname{Bias}_{\mathbb{X}}(S)^2 \leqslant \frac{N}{K} - 1$$

Succinctly, we write

$$\ell_2^*(\operatorname{Bias}_{\mathbb{X}}) \leqslant \sqrt{\frac{N}{K} - 1}$$

Here $\ell_2^*(f)$ is identical to the definition of $\ell_2(f)$ except that it excludes $f(0)^2$ in the sum

Small-bias Distribution

- Let \mathbb{Y} be a distribution over $\{0,1\}^n$
- ullet We say that $\mathbb {Y}$ is a small-bias distribution if

$$\operatorname{Bias}_{\mathbb{Y}}(S) \leqslant \varepsilon$$

for all
$$0 \neq S \in \{0, 1\}^n$$

 Prove: A random probability distribution is a small-bias distribution with very high probability

Min-Entropy Extraction via Small-bias Masking

- Let $\mathbb X$ be a min-entropy source with $\mathrm{H}_\infty(\mathbb X)\geqslant k$
- Let $\mathbb Y$ be a small bias distribution such that $\mathrm{Bias}_{\mathbb Y}(S)\leqslant \varepsilon$, for all $0\neq S\in\{0,1\}^n$
- We want to say that $\mathbb{X} \oplus \mathbb{Y}$ is very close to the uniform distribution \mathbb{U} over the sample space $\{0,1\}^n$.

$$2SD(X \oplus Y, U) \leq \ell_{2}(Bias_{X \oplus Y} - Bias_{U})$$

$$= \ell_{2}^{*}(Bias_{X \oplus Y} - Bias_{U})$$

$$= \ell_{2}^{*}(Bias_{X \oplus Y})$$

$$= \ell_{2}^{*}(Bias_{X}Bias_{Y})$$

$$\leq \varepsilon \ell_{2}^{*}(Bias_{X})$$

$$\leq \varepsilon \sqrt{\frac{N}{\kappa} - 1}$$