Lecture 24: Tackling Probability Distributions and XOR Lemma

Overview

- Until now, we have treated a distribution X over $\{0,1\}^{n}$ as the function $X:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that $X(\omega):=\mathbb{P}[X=\omega]$
- However, for intuition purposes, we want to develop concepts that are unique to distributions that are analogous to the concepts in Fourier analysis of functions

Bias of a Distribution: Intuition

- Let X be a distribution over $\{0,1\}^{n}$
- Consider the following algorithm for a fixed $S \in\{0,1\}^{n}$
(1) Sample $x \sim X$
(2) Output $S \cdot x$
- The output distribution is over the sample space $\{0,1\}$. Let p_{0} represent the probability that the output of this algorithm is 0 ; and, p_{1} represent the probability of the output being 1 .
- We want to say that the output is "unbiased" (or, "has bias 0") if $p_{0}=p_{1}=1 / 2$. Similarly, we want to say that the output "has bias 1 " if $p_{0}=1$ and $p_{1}=0$. Finally, we want to say that the output "has bias -1 " if $p_{0}=0$ and $p_{1}=-1$.
- Interpolating this intuition, we want to say that the bias of the output distribution of the algorithm above is $p_{0}-p_{1}$

Bias: Definition

Definition

Let X be a distribution over the sample space $\{0,1\}^{n}$. For any $S \in\{0,1\}^{n}$, we define the bias of X with respect to (the linear test) S as

$$
\operatorname{Bias}_{X}(S):=N \widehat{X}(S)
$$

Collision Probability

- Let X and Y be two probability distributions over $\{0,1\}^{n}$
- $\operatorname{Col}(X, Y)$ refers to the probability that two samples drawn according to X and Y turn out to be identical. We know that

$$
\operatorname{Col}(X, Y)=N\langle X, Y\rangle=N \sum_{S \in\{0,1\}^{n}} \widehat{X}(S) \cdot \widehat{Y}(S)
$$

- Equivalently, we have

$$
\operatorname{Col}(X, Y)=\frac{1}{N} \sum_{S \in\{0,1\}^{n}} \operatorname{Bias}_{X}(S) \cdot \operatorname{Bias}_{Y}(S)
$$

Bias of XOR of two Distributions

- Recall that we had defined the distribution $(X \oplus Y)$ as a distribution over $\{0,1\}^{n}$ that is identical to the function $N(X * Y)$.
- We had also proven that

$$
(\widehat{X * Y})(S)=\widehat{X}(S) \cdot \widehat{Y}(S)
$$

- So, we can conclude that

$$
\operatorname{Bias}_{X \oplus Y}(S)=\operatorname{Bias}_{X}(S) \cdot \operatorname{Bias}_{Y}(S)
$$

- For two function $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$, let us define $L_{1}(f-g)$ as follows

$$
L_{1}(f-g):=\frac{1}{N} \sum_{x \in\{0,1\}^{n}}|f(x)-g(x)|
$$

- We can upper-bound $L_{1}(f-g)$ using \widehat{f} and \widehat{g} as follows

$$
\begin{aligned}
L_{1}(f-g) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}}|f(x)-g(x)| \\
& \leqslant \frac{1}{N} \sqrt{N} \cdot\left(\sum_{x \in\{0,1\}^{n}}(f(x)-g(x))^{2}\right)^{1 / 2}, \text { by Cauchy-Schv } \\
& =\left(\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(f(x)-g(x))^{2}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(f-g)(x)^{2}\right)^{1 / 2} \\
& =\left(\sum_{S \in\{0,1\}^{n}}(\widehat{f-g})(S)^{2}\right)^{1 / 2}, \text { by Parseval's } \\
& =\left(\sum_{S \in\{0,1\}^{n}}(\widehat{f}(S)-\widehat{g}(S))^{2}\right)^{1 / 2} \\
& =: \ell_{2}(\widehat{f}-\widehat{g})
\end{aligned}
$$

- We can obtain a similar result for statistical distance, which is the analogue of $L_{1}(\cdot)$ for functions

$$
2 \mathrm{SD}(X, Y):=\sum_{x \in\{0,1\}^{n}}|X(x)-Y(x)|
$$

- So, we have
$2 \mathrm{SD}(X, Y)=N L_{1}(X-Y) \leqslant N \ell_{2}(\widehat{X}-\widehat{Y})=\ell_{2}\left(\operatorname{Bias}_{X}-\operatorname{Bias}_{Y}\right)$
That is,

$$
2 \mathrm{SD}(X, Y) \leqslant \sum_{S \in\{0,1\}^{n}}\left(\operatorname{Bias}_{X}(S)-\operatorname{Bias}_{Y}(S)\right)^{2}
$$

Summary

Functions	Probability
$\widehat{X}(S)$	$\operatorname{Bias} X(S):=N \widehat{X}(S)$
$\langle X, Y\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{X}(S) \widehat{Y}(S)$	$\operatorname{Col}(X, Y)=\frac{1}{N} \sum_{S \in\{0,1\}^{n}} \operatorname{Bias}_{X}(S) \operatorname{Bias}_{Y}(S)$
$(\widehat{X * Y})(S)=\widehat{X}(S) \widehat{Y}(S)$	$\operatorname{Bias}_{X \oplus Y}(S)=\operatorname{Bias}_{X}(S) \operatorname{Bias}_{Y}(S)$
$L_{1}(X-Y) \leqslant \ell_{2}(\widehat{X}-\widehat{Y})$	$2 \operatorname{SD}(X, Y) \leqslant \ell_{2}\left(\operatorname{Bias}_{X}-\operatorname{Bias}_{Y}\right)$

- Let \mathbb{X} be a distribution over $\{0,1\}$ such that $\mathbb{P}[\mathbb{X}=0]=\frac{1+\varepsilon}{2}$ and $\mathbb{P}[X=1]=\frac{1-\varepsilon}{2}$
- Note that $n=1$ and $\operatorname{Bias}_{X}(0)=1$ and $\operatorname{Bias}_{X}(1)=\varepsilon$
- Let $\mathbb{S}_{n}=\mathbb{X}^{(1)} \oplus \mathbb{X}^{(2)} \oplus \cdots \oplus \mathbb{X}^{(n)}$
- Note that

$$
\operatorname{Bias}_{S}(0)=\operatorname{Bias}_{\mathbb{X}^{(1)}}(0) \cdot \operatorname{Bias}_{\mathbb{X}^{(2)}}(0) \cdots \operatorname{Bias}_{\mathbb{X}(n)}(0)=1
$$

- Note that

$$
\operatorname{Bias}_{S}(1)=\operatorname{Bias}_{\mathbb{X}^{(1)}}(1) \cdot \operatorname{Bias}_{\mathbb{X}^{(2)}}(1) \cdots \operatorname{Bias}_{\mathbb{X}(n)}(1)=\varepsilon^{n}
$$

- From the biases, we can conclude that $\mathbb{P}\left[\mathbb{S}_{n}=0\right]=\frac{1+\varepsilon^{n}}{2}$ and $\mathbb{P}\left[\mathbb{S}_{n}=1\right]=\frac{1-\varepsilon^{n}}{2}$
- Further, we can conclude that \mathbb{S}_{n} is very close to the uniform distribution over $\{0,1\}$, namely $\mathbb{U}_{\{0,1\}}$. Note that $\operatorname{Bias}_{\mathbb{U}_{\{0,1\}}}(0)=1$ and $\operatorname{Bias}_{\mathbb{U}_{\{0,1\}}}(1)=0$. So, the statistical distance between \mathbb{S}_{n} and $\mathbb{U}_{\{0,1\}}$ is upper-bounded as follows.
$2 \operatorname{SD}\left(\mathbb{S}_{n}, \mathbb{U}_{\{0,1\}}\right) \leqslant \ell_{2}\left(\operatorname{Bias}_{\mathbb{S}_{n}}-\operatorname{Bias}_{\mathbb{U}_{\{0,1\}}}\right)=\ell_{2}\left(\left(1, \varepsilon^{n}\right)-(1,0)\right)=\varepsilon^{n}$
That is, \mathbb{S}_{n} is getting close to the uniform distribution exponentially fast!
- In general, we can consider the sum $\mathbb{S}_{n}=\mathbb{X}_{1} \oplus \cdots \oplus \mathbb{X}_{n}$, where $\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$ are independent distributions over $\{0,1\}$ with bias $\varepsilon_{1}, \ldots, \varepsilon_{n}$, respectively. Then, we shall have
$\operatorname{Bias}_{\mathbb{S}_{n}}(1)=\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}$.
- It is extremely crucial that the distributions $\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$ are independent. Otherwise, we cannot multiply the biases to obtain the bias of the sum \mathbb{S}_{n}. For example, let ($\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$) be uniform random variables over $\{0,1\}^{n}$ such that their parity is 0 (that is, they have even number of 1 s). Each random variable has $\operatorname{Bias}_{\mathbb{X}_{i}}(1)=0$. However, the random variable \mathbb{S}_{n} has $\operatorname{Bias}_{S_{n}}(1)=1$.

A Combinatorial Proof.

- To compute the bias $\operatorname{Bias}_{\mathbb{S}_{n}}(1)$, we need to estimate

$$
\begin{aligned}
& \mathbb{P}\left[\mathbb{S}_{n}=0\right]-\mathbb{P}\left[\mathbb{S}_{n}=1\right] \\
& =\sum_{i \text { is even }}\binom{n}{i}\left(\frac{1-\varepsilon}{2}\right)^{i}\left(\frac{1+\varepsilon}{2}\right)^{n-i}-\sum_{i: \text { odd }}\binom{n}{i}\left(\frac{1-\varepsilon}{2}\right)^{i}\left(\frac{1+\varepsilon}{2}\right)^{n-i} \\
& =\sum_{i=1}^{n}\binom{n}{i}(-1)^{i}\left(\frac{1-\varepsilon}{2}\right)^{i}\left(\frac{1+\varepsilon}{2}\right)^{n-i} \\
& =\left(\frac{1+\varepsilon}{2}-\frac{1-\varepsilon}{2}\right)^{n}=\varepsilon^{n}
\end{aligned}
$$

- Note that this conclusion followed so easily using Fourier analysis

