Lecture 22: Some Practice with Fourier Analysis

Overview

Today's lecture is primarily based on the material in Section 3 of the survey by Ronald D. Wolf

- Consider two Boolean functions $f, g:\{0,1\}^{n} \rightarrow\{+1,-1\}$
- Suppose $\mathbb{P}[f(x) \neq g(x)]=\delta$ (where x is drawn uniformly at random from $\left.\{0,1\}^{n}\right)$. We shall write it as $\mathbb{P}[f \neq g]$ for succinctness.
- Verify that $\langle f, g\rangle=(1-2 \delta)$. Equivalently,

$$
\langle f, g\rangle=1-2 \cdot \mathbb{P}[f \neq g]
$$

- Verify that $\|f-g\|_{2}^{2}=4 \cdot \mathbb{P}[f \neq g]$

Approximating a Boolean Function

- Suppose $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ is a Boolean function
- Let $\mathcal{C} \subseteq\{0,1\}^{n}$ be a small subset. For example, \mathcal{C} may be the set of all subsets of size $\leqslant d$, a constant.
- Suppose $\sum_{S \in \mathcal{C}} \widehat{f}(S)^{2} \geqslant 1-\varepsilon$. Recall that $\sum_{S} \widehat{f}(S)^{2}=1$ for a Boolean f. This constraint says that the Fourier coefficient $\widehat{f}(S)$, where $S \in \mathcal{C}$, have most of the spectral weight.
- Let us define a new (real-valued) function $h:\{0,1\}^{n} \rightarrow \mathbb{R}$ as follows

$$
h:=\sum_{S \in \mathcal{C}} \widehat{f}(S) \chi_{S}
$$

- Note that h need not be a Boolean function. Instead, consider the Boolean function sgn h, i.e., the sign of the function h
- Our objective is to prove that f and $\operatorname{sgn} h$ disagree with very low probability
- Here is the proof outline. I am leaving the explanation of each step as an exercise. Define $D=\left\{x \in\{0,1\}^{n}: f(x) \neq \operatorname{sgn} h(x)\right\}$.

$$
\begin{aligned}
4 \mathbb{P}[f \neq \operatorname{sgn} h]=\|f-\operatorname{sgn} h\|_{2}^{2} & =\frac{1}{N} \cdot \sum_{x \in D}(f-\operatorname{sgn} h)(x)^{2} \\
& \leqslant \frac{4}{N} \cdot \sum_{x \in D}(f-h)(x)^{2} \\
& \leqslant 4 \cdot \sum_{S}(\widehat{f-h})(S)^{2} \\
& =4 \cdot \sum_{S}(\widehat{f}(S)-\widehat{h}(S))^{2} \\
& =4 \cdot \sum_{S \notin \mathcal{C}} \widehat{f}(S)^{2} \\
& \leqslant 4 \cdot \varepsilon
\end{aligned}
$$

- Therefore, we have $\mathbb{P}[f \neq \operatorname{sgn} h] \leqslant \varepsilon$

Advantage in Predicting a Boolean Function

- Suppose $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ is a Boolean function
- Let $p:\{0,1\}^{n} \rightarrow[-1,+1]$ be a sparse polynomial. That is, there is a small set $\mathcal{C} \subseteq\{0,1\}^{n}$ such that $\widehat{p}(S) \neq 0 \Longrightarrow S \in \mathcal{C}$ (Think: What does this mathematical constraint mean in English?)
- Suppose $\langle f, p\rangle \geqslant \varepsilon$
- We will like to claim that there is a character that has non-trivial advantage in predicting f
- Here is the proof outline. The explanation of each step is left as exercise.

$$
\begin{aligned}
\varepsilon \leqslant\langle f, p\rangle & =\sum_{S} \widehat{f}(S) \cdot \widehat{p}(S) \\
& =\sum_{S \in \mathcal{C}} \widehat{f}(S) \cdot \widehat{p}(S) \\
& \leqslant \sqrt{\sum_{S \in \mathcal{C}} \widehat{f}(S)^{2}} \cdot\|p\|_{2}
\end{aligned}
$$

$$
\leqslant \sqrt{\sum_{S \in \mathcal{C}} \widehat{f}(S)^{2}} \cdot 1
$$

- Therefore, there exists $S^{*} \in \mathcal{C}$ such that

$$
\left|\widehat{f}\left(S^{*}\right)\right| \geqslant \frac{\varepsilon}{\sqrt{|\mathcal{C}|}}
$$

- Therefore, there is a character $\chi_{S^{*}}$ that has the non-trivial advantage in predicting the function f

Heavy Fourier Coefficients are Few

- Let $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ be a Boolean function
- A heavy Fourier coefficient is one such that $|\widehat{f}(S)| \geqslant \varepsilon$
- Define the set of all heavy Fourier coefficients

$$
\mathcal{C}_{\varepsilon}=\left\{S \in\{0,1\}^{n}:|\widehat{f}(S)| \geqslant \varepsilon\right\}
$$

- Prove that $\left|\mathcal{C}_{\varepsilon}\right| \leqslant \frac{1}{\varepsilon^{2}}$
- I want to emphasize that the upper bound is independent of n

