Lecture 22: Some Practice with Fourier Analysis

AP ► < E ►

Today's lecture is primarily based on the material in Section 3 of the survey by Ronald D. Wolf

イロト イボト イヨト イヨト

-

- Consider two Boolean functions $f, g: \{0,1\}^n \rightarrow \{+1,-1\}$
- Suppose P [f(x) ≠ g(x)] = δ (where x is drawn uniformly at random from {0,1}ⁿ). We shall write it as P [f ≠ g] for succinctness.
- Verify that $\langle f,g
 angle=(1-2\delta).$ Equivalently,

$$\langle f,g\rangle = 1 - 2 \cdot \mathbb{P}[f \neq g]$$

• Verify that $\|f - g\|_2^2 = 4 \cdot \mathbb{P}[f \neq g]$

- Suppose $f: {\{0,1\}}^n \to {\{+1,-1\}}$ is a Boolean function
- Let C ⊆ {0,1}ⁿ be a small subset. For example, C may be the set of all subsets of size ≤ d, a constant.
- Suppose $\sum_{S \in C} \hat{f}(S)^2 \ge 1 \varepsilon$. Recall that $\sum_S \hat{f}(S)^2 = 1$ for a Boolean f. This constraint says that the Fourier coefficient $\hat{f}(S)$, where $S \in C$, have most of the spectral weight.
- Let us define a new (real-valued) function $h: \{0,1\}^n \to \mathbb{R}$ as follows

$$h := \sum_{S \in \mathcal{C}} \widehat{f}(S) \chi_S$$

- Note that h need not be a Boolean function. Instead, consider the Boolean function sgn h, i.e., the sign of the function h
- Our objective is to prove that f and sgn h disagree with very low probability

Approximating a Boolean Function

- Here is the proof outline. I am leaving the explanation of each step as an exercise. Define $D = \{x \in \{0,1\}^n : f(x) \neq \text{sgn } h(x)\}.$ $4\mathbb{P}\left[f \neq \operatorname{sgn} h\right] = \left\|f - \operatorname{sgn} h\right\|_{2}^{2} = \frac{1}{N} \cdot \sum_{x \in D} \left(f - \operatorname{sgn} h\right)(x)^{2}$ $\leq \frac{4}{N} \cdot \sum_{x \in D} (f - h) (x)^2$ $\leq 4 \cdot \sum_{S} \widehat{(f-h)}(S)^2$ $=4\cdot\sum_{S}\left(\widehat{f}(S)-\widehat{h}(S)\right)^{2}$ $=4\cdot\sum_{S\notin C}\widehat{f}(S)^2$ $\leq 4 \cdot \varepsilon$.
- Therefore, we have $\mathbb{P}[f \neq \operatorname{sgn} h] \leqslant \varepsilon$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Advantage in Predicting a Boolean Function

- Suppose $f: \{0,1\}^n \to \{+1,-1\}$ is a Boolean function
- Let p: {0,1}ⁿ → [-1,+1] be a sparse polynomial. That is, there is a small set C ⊆ {0,1}ⁿ such that *p*(S) ≠ 0 ⇒ S ∈ C (Think: What does this mathematical constraint mean in English?)
- Suppose $\langle f, p \rangle \ge \varepsilon$
- We will like to claim that there is a character that has *non-trivial advantage* in predicting *f*
- Here is the proof outline. The explanation of each step is left as exercise.

$$\varepsilon \leq \langle f, p \rangle = \sum_{S} \widehat{f}(S) \cdot \widehat{p}(S)$$
$$= \sum_{S \in \mathcal{C}} \widehat{f}(S) \cdot \widehat{p}(S)$$
$$\leq \sqrt{\sum_{S \in \mathcal{C}} \widehat{f}(S)^{2}} \cdot ||p||_{2}$$

Convolution

$$\leq \sqrt{\sum_{S\in\mathcal{C}}\widehat{f}(S)^2}\cdot 1.$$

• Therefore, there exists $S^* \in \mathcal{C}$ such that

$$\left|\widehat{f}(S^*)\right| \geqslant rac{arepsilon}{\sqrt{|\mathcal{C}|}}$$

 Therefore, there is a character χ_{S*} that has the non-trivial advantage in predicting the function f

- Let $f: \{0,1\}^n \to \{+1,-1\}$ be a Boolean function
- A heavy Fourier coefficient is one such that $\left|\widehat{f}(S)\right| \ge \varepsilon$
- Define the set of all heavy Fourier coefficients

$$\mathcal{C}_{\varepsilon} = \left\{ S \in \{0,1\}^n \colon \left| \widehat{f}(S) \right| \geqslant \varepsilon \right\}$$

- Prove that $|\mathcal{C}_{\varepsilon}| \leqslant \frac{1}{\varepsilon^2}$
- I want to emphasize that the upper bound is *independent of n*

・ 同 ト ・ ヨ ト ・ ヨ ト