Lecture 21: Convolution

Warm-up Exercise

- Before we begin, let us start with some warm-up exercises
- Suppose $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is a real-valued function
- Think: $\widehat{f}(0)$ represents the mean of f, when the input of $f(\cdot)$ is chosen uniformly at random, i.e., $\widehat{f}(0)=\mathbb{E}[f(U)]$
- Think: $\sum_{S \neq 0} \widehat{f}(S)^{2}$ represents the variance of the random variable $f(U)$
- For two functions $f, g:\{0,1\}^{n} \rightarrow\{+1,-1\}$ the inner-product $\langle f, g\rangle$ measures the "similarity" of the two functions
- Think: If f, g agree at $(1-\varepsilon)$ fraction of inputs and they differ in the remaining ε fraction of the inputs then $\langle f, g\rangle=(1-2 \varepsilon)$

Outline of today's lecture

- In today's lecture, we shall study an important property of the Fourier basis functions that makes them special, namely, additive homomorphism
- This additive homomorphism property shall help us prove interesting properties of an important technical tool in Fourier analysis called Convolution
- Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be an arbitrary function
- We say that f exhibits "additive homomorphism" if, for all $x, y \in\{0,1\}^{n}$, we have

$$
f(x+y)=f(x) \cdot f(y)
$$

- Observe that all the Fourier basis functions χ_{S} satisfy this additive homomorphism property

Discussion of "What is a Fourier Basis"

- Let $F=\left\{f_{0}, f_{1}, \ldots, f_{N-1}\right\}$ be a set of functions $\{0,1\}^{n} \rightarrow \mathbb{R}$ such that
(1) Orthonormality. The functions in F are orthonormal with respect to an "inner-product"
(2) Symmetry. For all $i \in\{0, \ldots, N\}$ and $x \in\{0,1\}^{n}$, we have $f_{i}(x)=f_{x}(i)$
(3) Additive Homomorphism. For all $x, y \in\{0,1\}^{n}$, and $i \in\{0, \ldots, N-1\}$, we have $f_{i}(x+y)=f_{i}(x) \cdot f_{i}(y)$
- Any analysis that we perform in this course extends to any basis F with the properties mentioned above
- Think: These properties imply that $f_{0}(x)=1$, for all $x \in\{0,1\}^{n}$!

Intuition of the Convolution Operator

- Let X, Y be probability distributions over $\{0,1\}^{n}$
- Consider the following algorithm
(1) Sample $x \sim X$ and sample $y \sim Y$
(2) Output $z=x \oplus y$
- Note that the output of this algorithm is a distribution over the sample space $\{0,1\}^{n}$. Let us represent the output distribution of this algorithm by Z (also referred to as the distribution $X \oplus Y$)
- Question: What is the $\mathbb{P}[Z=z]$?
- Note that x can be anything in $\{0,1\}^{n}$. However, given x and z, there is a unique $y=x \oplus z$ such that $x \oplus y=z$
- So, we have

$$
\mathbb{P}[Z=z]=\sum_{x \in\{0,1\}^{n}} \mathbb{P}[X=x] \mathbb{P}[Y=x \oplus z]
$$

- The distribution Z is (a scaling) of the convolution of the distributions X and Y.

Convolution

(1) Let $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$ be two functions
(2) The convolution of f and g is the function $(f * g):\{0,1\}^{n} \rightarrow \mathbb{R}$ defined as follows

$$
(f * g)(x)=\frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) \cdot g(x-y)
$$

(3) Note that if X and Y are two function representing probability distributions over $\{0,1\}^{n}$, then $N(X * Y)$ is the function corresponding to the probability distribution $X \oplus Y$
(9) Note that the Convolution is a bilinear operator!

- Given two function f and g, we are interested in expressing the function $(\widehat{f * g})$ using the functions \widehat{f} and \widehat{g}
- We shall prove the following result

Lemma

For all functions $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$ and $S \in\{0,1\}^{n}$, we have

$$
\widehat{(f * g)}(S)=\widehat{f}(S) \cdot \widehat{g}(S)
$$

- We shall directly prove this result

$$
\begin{aligned}
\widehat{(f * g)}(S) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(f * g)(x) \chi_{s}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y) \chi_{s}(x)
\end{aligned}
$$

$$
=\frac{1}{N^{2}} \sum_{x \in\{0,1\}^{n}} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y) \chi_{s}(y) \chi_{S}(x-y)
$$

The final step above is a consequence of the additive homomorphism of the function χ_{s}. Let us continue with the simplification.

$$
\begin{aligned}
\widehat{(f * g)}(S) & =\frac{1}{N^{2}} \sum_{x \in\{0,1\}^{n}} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y) \chi_{S}(y) \chi_{S}(x-y) \\
& =\frac{1}{N^{2}} \sum_{y \in\{0,1\}^{n}} f(y) \chi_{S}(y) \sum_{r \in\{0,1\}^{n}} g(r) \chi_{S}(r) \\
& =\left(\frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) \chi_{s}(y)\right)\left(\frac{1}{N} \sum_{r \in\{0,1\}^{n}} g(r) \chi_{S}(r)\right) \\
& =\widehat{f}(S) \cdot \widehat{g}(S)
\end{aligned}
$$

Fourier Transform of Convolution III

- We can succinctly summarize this result as follows: $\widehat{(f * g)}=\widehat{f} \cdot \widehat{g}$
- Exercise: Express $\widehat{f \cdot g}$ using \widehat{f} and \widehat{g}

Offset of a Function

- Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Define $g:\{0,1\}^{n} \rightarrow \mathbb{R}$ as $g(x)=f(x-c)$, for some $c \in\{0,1\}^{n}$
- We are interested in expressing $\widehat{g}(S)$ using $\widehat{f}(S)$ and c

$$
\begin{aligned}
\widehat{g}(S) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} g(x) \chi_{s}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x-c) \chi_{s}(x-c) \chi_{s}(c) \\
& =\chi_{s}(c) \frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x-c) \chi_{s}(x-c) \\
& =\chi_{c}(S) \cdot \widehat{f}(S)
\end{aligned}
$$

- That is, we conclude that $\widehat{g}=\chi_{c} \cdot \widehat{f}$. Recall that $\chi_{c}(S) \in\{+1,-1\}$. So, $\chi_{c}(S) \cdot \widehat{f}(S)$ is either $\widehat{f}(S)$ or $-\widehat{f}(S)$.
- Intuition: If g is an offset of the function f, then \widehat{g} is a "twisting/rotation" of the function \widehat{f}. So, by studying the magnitudes of the Fourier transform, we can study the function "independent of their offsets"
- Additional Perspective: In fact, this result also implies that g can be rewritten as $N\left(\widehat{\chi_{c}} * f\right)$

