Lecture 21: Convolution

Warm-up Exercise

- Before we begin, let us start with some warm-up exercises
- Suppose $f: \{0,1\}^n \to \mathbb{R}$ is a real-valued function
- Think: $\widehat{f}(0)$ represents the mean of f, when the input of $f(\cdot)$ is chosen uniformly at random, i.e., $\widehat{f}(0) = \mathbb{E}\left[f(U)\right]$
- Think: $\sum_{S\neq 0} \widehat{f}(S)^2$ represents the variance of the random variable f(U)

- For two functions $f,g:\{0,1\}^n \to \{+1,-1\}$ the inner-product $\langle f,g \rangle$ measures the "similarity" of the two functions
- Think: If f,g agree at $(1-\varepsilon)$ fraction of inputs and they differ in the remaining ε fraction of the inputs then $\langle f,g\rangle=(1-2\varepsilon)$

Outline of today's lecture

- In today's lecture, we shall study an important property of the Fourier basis functions that makes them special, namely, additive homomorphism
- This additive homomorphism property shall help us prove interesting properties of an important technical tool in Fourier analysis called Convolution

Additive Homomorphism

- Let $f: \{0,1\}^n \to \mathbb{R}$ be an arbitrary function
- We say that f exhibits "additive homomorphism" if, for all $x, y \in \{0,1\}^n$, we have

$$f(x+y)=f(x)\cdot f(y)$$

ullet Observe that all the Fourier basis functions $\chi_{\mathcal{S}}$ satisfy this additive homomorphism property

Discussion of "What is a Fourier Basis"

- Let $F = \{f_0, f_1, \dots, f_{N-1}\}$ be a set of functions $\{0, 1\}^n \to \mathbb{R}$ such that
 - **Orthonormality.** The functions in *F* are orthonormal with respect to an "inner-product"
 - **2 Symmetry.** For all $i \in \{0, ..., N\}$ and $x \in \{0, 1\}^n$, we have $f_i(x) = f_x(i)$
 - **3 Additive Homomorphism.** For all $x, y \in \{0, 1\}^n$, and $i \in \{0, ..., N-1\}$, we have $f_i(x + y) = f_i(x) \cdot f_i(y)$
- Any analysis that we perform in this course extends to any basis F with the properties mentioned above
- Think: These properties imply that $f_0(x) = 1$, for all $x \in \{0,1\}^n$!

Intuition of the Convolution Operator

- Let X, Y be probability distributions over $\{0, 1\}^n$
- Consider the following algorithm
 - **1** Sample $x \sim X$ and sample $y \sim Y$
 - **2** Output $z = x \oplus y$
- Note that the output of this algorithm is a distribution over the sample space $\{0,1\}^n$. Let us represent the output distribution of this algorithm by Z (also referred to as the distribution $X \oplus Y$)
- Question: What is the $\mathbb{P}[Z = z]$?
 - Note that x can be anything in $\{0,1\}^n$. However, given x and z, there is a unique $y=x\oplus z$ such that $x\oplus y=z$
 - So, we have

$$\mathbb{P}[Z=z] = \sum_{x \in \{0,1\}^n} \mathbb{P}[X=x] \mathbb{P}[Y=x \oplus z]$$

 The distribution Z is (a scaling) of the convolution of the distributions X and Y.

Convolution

- **1** Let $f, g: \{0,1\}^n \to \mathbb{R}$ be two functions
- ② The convolution of f and g is the function $(f * g) \colon \{0,1\}^n \to \mathbb{R}$ defined as follows

$$(f * g)(x) = \frac{1}{N} \sum_{y \in \{0,1\}^n} f(y) \cdot g(x - y)$$

- **3** Note that if X and Y are two function representing probability distributions over $\{0,1\}^n$, then N(X*Y) is the function corresponding to the probability distribution $X \oplus Y$
- Note that the Convolution is a bilinear operator!

Fourier Transform of Convolution I

- Given two function f and g, we are interested in expressing the function $\widehat{(f * g)}$ using the functions \widehat{f} and \widehat{g}
- We shall prove the following result

Lemma

For all functions $f,g:\{0,1\}^n\to\mathbb{R}$ and $S\in\{0,1\}^n$, we have

$$\widehat{(f * g)}(S) = \widehat{f}(S) \cdot \widehat{g}(S)$$

We shall directly prove this result

$$\widehat{(f * g)}(S) = \frac{1}{N} \sum_{x \in \{0,1\}^n} (f * g)(x) \chi_S(x)$$

$$= \frac{1}{N} \sum_{x \in \{0,1\}^n} \frac{1}{N} \sum_{y \in \{0,1\}^n} f(y) g(x - y) \chi_S(x)$$

Fourier Transform of Convolution II

$$=\frac{1}{N^2}\sum_{x\in\{0,1\}^n}\sum_{y\in\{0,1\}^n}f(y)g(x-y)\chi_S(y)\chi_S(x-y)$$

The final step above is a consequence of the additive homomorphism of the function χ_S . Let us continue with the simplification.

$$\widehat{(f * g)}(S) = \frac{1}{N^2} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} f(y)g(x - y)\chi_S(y)\chi_S(x - y)$$

$$= \frac{1}{N^2} \sum_{y \in \{0,1\}^n} f(y)\chi_S(y) \sum_{r \in \{0,1\}^n} g(r)\chi_S(r)$$

$$= \left(\frac{1}{N} \sum_{y \in \{0,1\}^n} f(y)\chi_S(y)\right) \left(\frac{1}{N} \sum_{r \in \{0,1\}^n} g(r)\chi_S(r)\right)$$

$$= \widehat{f}(S) \cdot \widehat{g}(S)$$

Fourier Transform of Convolution III

• We can succinctly summarize this result as follows:

$$\widehat{(f * g)} = \widehat{f} \cdot \widehat{g}$$

 \bullet Exercise: Express $\widehat{f\cdot g}$ using \widehat{f} and \widehat{g}

- Let $f: \{0,1\}^n \to \mathbb{R}$
- Define $g: \{0,1\}^n \to \mathbb{R}$ as g(x) = f(x-c), for some $c \in \{0,1\}^n$
- ullet We are interested in expressing $\widehat{g}(S)$ using $\widehat{f}(S)$ and c

$$\widehat{g}(S) = \frac{1}{N} \sum_{x \in \{0,1\}^n} g(x) \chi_S(x)$$

$$= \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x-c) \chi_S(x-c) \chi_S(c)$$

$$= \chi_S(c) \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x-c) \chi_S(x-c)$$

$$= \chi_c(S) \cdot \widehat{f}(S)$$

- That is, we conclude that $\widehat{g} = \chi_c \cdot \widehat{f}$. Recall that $\chi_c(S) \in \{+1, -1\}$. So, $\chi_c(S) \cdot \widehat{f}(S)$ is either $\widehat{f}(S)$ or $-\widehat{f}(S)$.
- Intuition: If g is an offset of the function f, then \widehat{g} is a "twisting/rotation" of the function \widehat{f} . So, by studying the magnitudes of the Fourier transform, we can study the function "independent of their offsets"
- Additional Perspective: In fact, this result also implies that g can be rewritten as $N(\widehat{\chi_c} * f)$