Lecture 20: Basic Applications

- Objective: Study function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Interpret function $\{0,1\}^{n} \rightarrow \mathbb{R}$ as vectors in \mathbb{R}^{N}, where $N=2^{n}$
- Fourier Basis: A basis for the space \mathbb{R}^{N} with appropriate properties
- Character Functions: For $S \in\{0,1\}^{n}$, we define

$$
\chi_{S}(x):=(-1)^{S_{1} x_{1}+\cdots+S_{n} x_{n}}
$$

where $x=x_{1} x_{2} \ldots x_{n}$ and $S=S_{1} S_{2} \ldots S_{n}$.

- We define the inner product of two functions as

$$
\langle f, g\rangle=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) g(x)
$$

- With respect to this inner-product the Fourier basis $\left\{\chi_{0}, \chi_{1}, \ldots, \chi_{N-1}\right\}$ is orthonormal
- Now, every function f can be written as

$$
f=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \chi_{S}
$$

- The mapping $f \mapsto \widehat{f}$ is the Fourier transformation
- There exists an $N \times N$ matrix \mathcal{F} such that $f \cdot \mathcal{F}=\widehat{f}$, for all f
- This result proves that the Fourier transformation is linear, that is, $(\widehat{f+g})=\widehat{f}+\widehat{g}$ and $\widehat{(c f)}=c \widehat{f}$
- We saw that $\mathcal{F} \cdot \mathcal{F}=\frac{1}{N} \cdot I_{N \times N}$. This result implies that \mathcal{F} is full rank and $\widehat{f}=\widehat{g}$ if and only if $f=g$. So, for any function f, we have

$$
\widehat{(\widehat{f})}=\frac{1}{N} f
$$

- We saw two identities
(1) Plancherel's Theorem: $\langle f, g\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \widehat{g}(S)$, and
(2) Parseval's Identity: $\langle f, f\rangle=\sum_{s \in\{0,1\}^{n}} \widehat{f}(S)^{2}$.

Objective

- The objective of this lecture is to associate "properties of a function f " to "properties of the function \widehat{f} "
- In the sequel, we shall consider a few such properties

Min-Entropy/Collision Probability

- Let \mathbb{X} be a random variable over the sample space $\{0,1\}^{n}$
- We shall use \mathbb{X} to represent the corresponding function $\{0,1\}^{n} \rightarrow \mathbb{R}$ defined as follows

$$
\mathbb{X}(x):=\mathbb{P}[\mathbb{X}=x]
$$

- Collision Probability. The probability that when we draw two independent samples according to the distribution \mathbb{X}, the two samples turn out to be identical. Note that this probability is $\operatorname{col}(\mathbb{X}):=\sum_{x \in\{0,1\}^{n}} \mathbb{X}(x)^{2}=N\langle\mathbb{X}, \mathbb{X}\rangle$

Min-Entropy/Collision Probability

- We can translate "collision probability" as a property of f into an alternate property of \widehat{f} as follows

Lemma

$$
\operatorname{col}(\mathbb{X})=N \sum_{S \in\{0,1\}^{n}} \widehat{\mathbb{X}}(S)^{2}
$$

This lemma is a direct consequence of Parseval's identity

- Note that if we say that " \mathbb{X} has low collision probability" then it is equivalent to saying that " $\sum_{S \in\{0,1\}^{n}} \widehat{\mathbb{X}}(S)^{2}$ is small'
- So, we can use " $\sum_{S \in\{0,1\}^{n}} \widehat{\mathbb{X}}(S)^{2}$ is small' as a proxy for the guarantee that " \mathbb{X} has low collision probability"
- Min Entropy. We say that the min-entropy of \mathbb{X} is $\geqslant k$, if $\mathbb{P}[\mathbb{X}=x] \leqslant 2^{-k}=\frac{1}{K}$, for all $x \in\{0,1\}^{n}$

Min-Entropy/Collision Probability

- We can similarly get a property of a high min-entropy distribution \mathbb{X}

Lemma

If the min-entropy of \mathbb{X} is $\geqslant k$, then we have

$$
\sum_{S \in\{0,1\}^{n}} \widehat{\mathbb{X}}(S)^{2} \leqslant \frac{1}{N K}
$$

The proof follows from the observation that if the min-entropy of \mathbb{X} is $\geqslant k$, then we have

$$
\operatorname{col}(\mathbb{X})=\sum_{x \in\{0,1\}^{n}} \mathbb{X}(x)^{2} \leqslant \sum_{x \in\{0,1\}^{n}} \mathbb{X}(x) \cdot 2^{-k}=\frac{1}{K}
$$

Min-Entropy/Collision Probability

- Intuitively, if a distribution \mathbb{X} has "high min-entropy" then it has "low collision probability," which, in turn, implies that " $\sum_{S \in\{0,1\}^{n}} \widehat{\mathbb{X}}(S)^{2}$ is small" (i.e., the function $\widehat{\mathbb{X}}$ lies inside a small sphere)

Vector Spaces over Finite Fields

- We need to understand vector spaces over finite fields to understand the next result
- In this document, we shall restrict our attention to finite fields of size p, where p is a prime. In general, finite fields can have size q, where q is a prime-power
- A finite field is defined by three objects $\left(\mathbb{Z}_{p},+, \times\right)$
- The set $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$
- The addition operator + . This operator is integer addition $\bmod p$.
- The multiplication operator \times. This operator is integer multiplication $\bmod p$.
- For example, consider the finite field $\left(\mathbb{Z}_{5},+, \times\right)$. We have $3+4=2$ and $2 \times 4=3$
- Every element $x \in \mathbb{Z}_{p}$ has an additive inverse, represented by $-x$ such that $x+(-x)=0$. For example, $-3=2$
- Every element $x \in \mathbb{Z}_{p}^{*}:=\mathbb{Z}_{p} \backslash\{0\}$ has a multiplicative inverse, represented by $1 / x$, such that $x \times(1 / x)=1$. For example, $1 / 3=2$.
- We can interpret \mathbb{Z}_{p}^{n} as a vector space over the finite field $\left(\mathbb{Z}_{p},+, \times\right)$
- We shall consider vector subspace V of \mathbb{Z}_{p}^{n} that is spanned by the rows of the matrix G of the following form.

$$
G=\left[I_{k \times k} \mid P_{k \times(n-k)}\right]
$$

- We consider the corresponding subspace V^{\perp} of \mathbb{Z}_{p}^{n} that is spanned by the rows of the matrix H of the form

$$
H=\left[-P^{\top} \mid I_{(n-k) \times(n-k)}\right]
$$

- We define the dot-product of two vectors $u, v \in \mathbb{Z}_{p}^{n}$ as $u_{1} v_{1}+\cdots+u_{n} v_{n}$, where $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$
- Note that the dot-product of any row of G with any row of H is 0 . This result follows from the fact that $G \cdot H^{\top}=0_{k \times n-k}$. This observation implies that the dot-product of any vector in V with any vector in V^{\perp} is 0
- Note that V has dimension k and V^{\perp} has dimension $(n-k)$
- The vector space V^{\perp} is referred to as the dual vector space of V
- Note that the size of the vector space V is p^{k} and the size of the vector space V^{\perp} is p^{n-k}
- Let us consider an example. We shall work over the finite field $\left(\mathbb{Z}_{2},+, \times\right)$. Consider the following matrix

$$
G=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

The corresponding matrix H is defined as follows

$$
H=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Note that the dot-product of any row of G with any row of H is 0 . Consequently, the dot-product of any vector in the span of the rows-of- G with any vector in the span of the rows-of- H is always 0

Vector Spaces over Finite Fields

- Actually, any vector space $V \subseteq \mathbb{Z}_{p}^{n}$ has an associated $V^{\perp} \subseteq \mathbb{Z}_{p}^{n}$ such that the dot-product of their vectors is 0 . (Think how to prove this result)

Fourier Transform of Vector Spaces

- Let V be a vector sub-space of $\{0,1\}^{n}$ of dimension k. Let V^{\perp} be the dual vector sub-space of $\{0,1\}^{n}$ of dimension $(n-k)$.
- Let $f=\frac{1}{|V|} 1_{\{V\}}$. That is, the function f is the following probability distribution

$$
f(x)= \begin{cases}\frac{1}{K}, & \text { if } x \in V \\ 0, & \text { if } x \notin V\end{cases}
$$

- Then, we have the following result.

Lemma

$$
\widehat{f}(S)= \begin{cases}\frac{1}{N}, & \text { if } S \in V^{\perp} \\ 0, & \text { if } S \notin V^{\perp}\end{cases}
$$

- Proof Outline. Suppose $S \in V^{\perp}$.

$$
\begin{aligned}
\widehat{f}(S) & =\left\langle f, \chi_{S}\right\rangle=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x) \\
& =\frac{1}{N} \sum_{x \in V} f(x) \chi_{S}(x) \\
& =\frac{1}{N K} \sum_{x \in V}(-1)^{S \cdot x} \\
& =\frac{1}{N K} \sum_{x \in V} 1 \\
& =\frac{1}{N K} \cdot K=\frac{1}{N}
\end{aligned}
$$

Now, note that

$$
\langle f, f\rangle=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x)^{2}=\frac{1}{N} \sum_{x \in V} \frac{1}{K^{2}}=\frac{1}{N K}
$$

Next note that

$$
\begin{aligned}
\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2} & =\sum_{S \in V^{\perp}} \widehat{f}(S)^{2}+\sum_{S \notin V^{\perp}} \widehat{f}(S)^{2} \\
& =(N / K) \frac{1}{N^{2}}+\sum_{S \notin V^{\perp}} \widehat{f}(S)^{2} \\
& =\frac{1}{N K}+\sum_{S \notin V^{\perp}} \widehat{f}(S)^{2}
\end{aligned}
$$

By Parseval's identity, we have $\langle f, f\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}$. So, we get that

$$
\sum_{S \notin V^{\perp}} \widehat{f}(S)^{2}=0
$$

That is, for every $S \in V^{\perp}$, we have $\widehat{f}(S)=0$

- We can write the entire result tersely as follows

$$
\widehat{\left(\frac{1_{\{V\}}}{|V|}\right)}=\frac{1}{N} 1_{\left\{V^{\perp}\right\}}
$$

- As a corollary of this result, we can conclude that

$$
\widehat{\delta_{0}}=\frac{1}{N} 1_{\left\{\{0,1\}^{n}\right\}}
$$

Recall that δ_{0} is the delta function that is 1 only at $x=0 ; 0$ elsewhere. Furthermore, the function $1_{\left\{\{0,1\}^{n}\right\}}$ is the constant function that evaluates to 1 at every x

- Recursively use this result and the fact that $\left(V^{\perp}\right)^{\perp}=V$ to verify that $\widehat{(\widehat{f})}=\frac{1}{N} f$

