Lecture 07: Chernoff Bound: Easy to Use Forms

Recall: Chernoff Bound

- Consider a negatively associated joint distribution $\left(\mathbb{X}_{1}, \mathbb{X}_{2}, \ldots, \mathbb{X}_{n}\right)$, such that the marginal distributions \mathbb{X}_{i} are over $[0,1]$

OR

a negatively correlated joint distribution $\left(\mathbb{X}_{1}, \mathbb{X}_{2}, \ldots, \mathbb{X}_{n}\right)$, such that the marginal distributions \mathbb{X}_{i} are over $\{0,1\}$

- Define $p_{i}=\mathbb{E}\left[\mathbb{X}_{i}\right]$, for $i \in\{1,2, \ldots, n\}$. Define $p=\left(p_{1}+p_{2}+\cdots+p_{n}\right) / n$
- Define $\mathbb{S}_{n, p}:=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$. Chernoff bound states that

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant(p+\varepsilon) n\right] \leqslant \exp \left(-n \cdot \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

- Objective of this lecture. We shall obtain easier-to-compute, albeit weaker, upper bounds on the probability

Chernoff Bound Proof Template: Recall

Proof for the negatively associated case.

- Define $Y_{i}=\operatorname{Bern}\left(p_{i}\right)$, where $p_{i}=\mathbb{E}\left[\mathbb{X}_{i}\right]$ and $i \in\{1,2, \ldots, n\}$

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant(p+\varepsilon) n\right] & =\mathbb{P}\left[H^{\sum_{i=1}^{n} \mathbb{X}_{i}} \geqslant H^{(p+\varepsilon) n}\right] \\
& \leqslant \frac{\mathbb{E}\left[H^{\sum_{i=1}^{n} \mathbb{X}_{i}}\right]}{H^{(p+\varepsilon) n}} \\
& \leqslant \frac{\prod_{i=1}^{n} \mathbb{E}\left[H^{\mathbb{X}_{i}}\right]}{H^{(p+\varepsilon) n}}
\end{aligned}
$$

(Neg. association \& increasing property of $H^{(\cdot)}$)

$$
\leqslant \frac{\prod_{i=1}^{n} \mathbb{E}\left[H^{\mathbb{Y}}\right]}{H^{(p+\varepsilon) n}}
$$

$$
\text { (Convexity property of } H^{(\cdot)} \text {) }
$$

$$
=\frac{\prod_{i=1}^{n}\left(\left(1-p_{i}\right)+p_{i} \cdot H\right)}{H^{(p+\varepsilon) n}}
$$

$$
\leqslant \frac{((1-p)+p \cdot H)^{n}}{H^{(p+\varepsilon) n}}
$$

Rest of the analysis is identical to the previous lecture's analysis

- We shall prove the following bound

Theorem

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right) \leqslant \exp \left(-2 n \varepsilon^{2}\right)
$$

- Comment: The upper bound is easy to compute. However, this bound does not depend on p at all.
- To prove this result, it suffices to prove that

$$
\mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p) \geqslant 2 \varepsilon^{2}
$$

- We shall use the Lagrange form of the Taylor approximation theorem to the following function

$$
f(\varepsilon)=\mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)=(p+\varepsilon) \log \frac{p+\varepsilon}{p}+(1-p-\varepsilon) \log \frac{1-p-\varepsilon}{1-p}
$$

Observe that $f(0)=0$

- Differentiating once, we have

$$
f^{\prime}(\varepsilon)=\log \frac{p+\varepsilon}{p}-\log \frac{1-p-\varepsilon}{1-p}
$$

Observe that $f^{\prime}(0)=0$

- Differentiating twice, we have

$$
f^{\prime \prime}(\varepsilon)=\frac{1}{p+\varepsilon}+\frac{1}{1-p-\varepsilon}=\frac{1}{(p+\varepsilon)(1-p-\varepsilon)}
$$

- By applying the Lagrange form of Taylor's remainder theorem, we get the following result. For every ε, there exists $\theta \in[0,1]$ such that

$$
f(\varepsilon)=f(0)+f^{\prime}(0) \cdot \varepsilon+f^{\prime \prime}(\theta \varepsilon) \cdot \frac{\varepsilon^{2}}{2}=f^{\prime \prime}(\theta \varepsilon) \cdot \frac{\varepsilon^{2}}{2}
$$

Note that $f(\theta \varepsilon)=\frac{1}{(p+\theta \varepsilon)(1-p-\theta \varepsilon)}$. We can apply the AM-GM inequality to conclude that

$$
(p+\theta \varepsilon)(1-p-\theta \varepsilon) \leqslant\left(\frac{(p+\theta \varepsilon)+(1-p-\theta \varepsilon)}{2}\right)^{2}=\frac{1}{4}
$$

Therefore, we get that $f^{\prime \prime}(\theta \varepsilon) \geqslant 4$. Substituting this bound, we get

$$
f(\varepsilon)=f^{\prime \prime}(\theta \varepsilon) \cdot\left(\varepsilon^{2} / 2\right) \geqslant 4 \cdot\left(\varepsilon^{2} / 2\right)=2 \varepsilon^{2}
$$

This completes the proof.

- In the previous bound, we consider the probability of $\mathbb{S}_{n, p}$ exceeding the expected value $n p$ by an additive amount $n \varepsilon$. Now, we want to explore the case when the offset is multiplicative. That is, we want to consider the probability of $\mathbb{S}_{n, p}$ exceeding the expected value $n p$ by a multiplicative amount $\lambda(n p)$. We shall prove the following result

Theorem

For $\lambda>0$, we have

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n p(1+\lambda)\right] & \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p(1+\lambda), p)\right) \\
& \leqslant \exp \left(-\frac{\lambda^{2}}{2(1+\lambda / 3)} n p\right)
\end{aligned}
$$

- Comment: Note that this bound depends on p.
- Our objective is to prove

$$
\mathrm{D}_{\mathrm{KL}}(p(1+\lambda), p) \geqslant \frac{\lambda^{2}}{2(1+\lambda / 3)} \cdot p
$$

- Let us expand the left-hand side expression

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{KL}}(p(1+\lambda), p) \\
& =p(1+\lambda) \log (1+\lambda)+\underbrace{(1-p(1+\lambda)) \log \left(\frac{1-p(1+\lambda)}{1-p}\right)}
\end{aligned}
$$

- We will approximate the expression with the underbrace. For brevity, let us substitute $p^{\prime}=p+\lambda p$. The expression becomes

$$
\begin{aligned}
\left(1-p^{\prime}\right) \log \left(\frac{1-p^{\prime}}{1-p}\right) & =-\left(1-p^{\prime}\right) \log \frac{1-p}{1-p^{\prime}} \\
& =-\log \left(1+\frac{\lambda p}{1-p^{\prime}}\right)^{1-p^{\prime}} \\
& \geqslant-\lambda p
\end{aligned}
$$

The final inequality follows from the fact that $(1+x) \leqslant \exp (x)$.

- Substituting, this simplification, we have

$$
\mathrm{D}_{\mathrm{KL}}(p(1+\lambda), p) \geqslant(1+\lambda) p \log (1+\lambda)-\lambda p
$$

If we prove the following claim then we are done.

Claim

$$
(1+\lambda) \log (1+\lambda)-\lambda \geqslant \frac{\lambda^{2}}{2(1+\lambda / 3)}
$$

Proving this claim is left as an exercise.

- We have always been looking at the probability that the sum $\mathbb{S}_{n, p}$ significantly exceeds the expected value of the sum. We shall now consider the probability that the sum is $\mathbb{S}_{n, p}$ is significantly lower than the expected value of the sum.
- We can apply the Chernoff bound of the r.v. $1-\mathbb{X}_{i}$ and get the following result

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n(p-\varepsilon)\right] & =\mathbb{P}\left[n-S_{n, p} \geqslant n(1-p+\varepsilon)\right] \\
& \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(1-p+\varepsilon, 1-p)\right)
\end{aligned}
$$

By using the first form of our bounds that we studied today, we can conclude that
$\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n(p-\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(1-p+\varepsilon, 1-p)\right) \leqslant \exp \left(-2 n \varepsilon^{2}\right)$

- We are, however, interested in obtaining a bound where the deviation is multiplicative. That is,

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n p(1-\lambda)\right] \leqslant ? ?
$$

where $1>\lambda>0$.

- We shall prove the following bound

Theorem

For $1>\lambda>0$, we have

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n p(1-\lambda)\right] & \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p)\right) \\
& \leqslant \exp \left(-\lambda^{2} n p / 2\right)
\end{aligned}
$$

- We shall proceed just like the proof of the "second form." It suffices to prove that

$$
\mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p) \geqslant \lambda^{2} p / 2
$$

- Let us expand and write $\mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p)$ as follows

$$
(1-p(1-\lambda)) \log \frac{1-p(1-\lambda)}{1-p}+p(1-\lambda) \log (1-\lambda)
$$

Note that

$$
\begin{aligned}
& (1-p(1-\lambda)) \log \frac{1-p(1-\lambda)}{1-p} \\
= & -(1-p(1-\lambda)) \log \frac{1-p}{1-p(1-\lambda)} \\
= & -(1-p(1-\lambda)) \log \left(1-\frac{\lambda p}{1-p(1-\lambda)}\right) \\
\geqslant & -(1-p(1-\lambda)) \cdot\left(-\frac{\lambda p}{1-p(1-\lambda)}\right)=\lambda p
\end{aligned}
$$

The last inequality is from the fact that $1-x \leqslant \exp (-x)$ for all $x \geqslant 0$. (Comment: Since there is a negative sign in front, the inequality is in the opposite direction when substituted)

- Substituting this result, we get that

$$
\mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p) \geqslant \lambda p+p(1-\lambda) \log (1-\lambda)
$$

So, it suffices to prove that

$$
\lambda p+p(1-\lambda) \log (1-\lambda) \geqslant \lambda^{2} p / 2
$$

Or, equivalently, we need to prove that

$$
\lambda+(1-\lambda) \log (1-\lambda) \geqslant \lambda^{2} / 2
$$

- To prove this inequality, we will proceed by Lagrange form of the Taylor's remainder theorem on the function

$$
\begin{aligned}
f(x) & =(1-x) \log (1-x) . & & \\
f(x) & =(1-x) \log (1-x), & f^{\prime}(x) & =-\log (1-x)-1 \\
f^{\prime \prime}(x) & =\frac{1}{1-x}, & f^{\prime \prime \prime}(x) & =\frac{1}{(1-x)^{2}} \geqslant 0 .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
f(\lambda) & =f(0)+f^{\prime}(0) \lambda+f^{\prime \prime}(0) \lambda^{2} / 2+f^{\prime \prime \prime}(\theta \lambda) \lambda^{3} / 6 \\
& \geqslant f(0)+f^{\prime}(0) \lambda+f^{\prime \prime}(0) \lambda^{2} / 2 \\
& =0-\lambda+\lambda^{2} / 2
\end{aligned}
$$

which completes the proof.

Conclusion

To conclude, let us summarize the results that we derived today.

Theorem

The random variables $\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$ are negatively correlated and $0 \leqslant \mathbb{X}_{i} \leqslant 1$. Let $\mathbb{S}_{n, p}:=\mathbb{X}_{1}+\cdots+\mathbb{X}_{n}$, where $p:=\left(\mathbb{E}\left[\mathbb{X}_{1}\right]+\cdots+\mathbb{E}\left[\mathbb{X}_{n}\right]\right) / n$. Then, the following results hold
(1) For $\varepsilon \geqslant 0$, we have

$$
\begin{aligned}
& \mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-2 n \varepsilon^{2}\right), \text { and } \\
& \mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n(p-\varepsilon)\right] \leqslant \exp \left(-2 n \varepsilon^{2}\right)
\end{aligned}
$$

(2) For $\lambda \geqslant 0$, we have

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n p(1+\lambda)\right] \leqslant \exp \left(-\lambda^{2} n p / 2(1+\lambda / 3)\right)
$$

(3) For $1>\lambda \geqslant 0$, we have

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n p(1-\lambda)\right] \leqslant \exp \left(-\lambda^{2} n p / 2\right)
$$

Appendix: Chernoff for Sampling without Replacement

- Suppose there are R red balls and B blue balls in an urn
- Draw n samples without replacement
- Let $\left(\mathbb{X}_{1}, \mathbb{X}_{2}, \ldots, \mathbb{X}_{n}\right)$ be the random variables such that \mathbb{X}_{i} indicates whether the i-th draw is a red ball or not
- Prove that $\mathbb{E}\left[\mathbb{X}_{i}\right]=\mathbb{E}\left[\mathbb{X}_{1}\right]=R /(R+B)$
- Our objective is to show that the random variables are negatively correlated That is, the covariance of \mathbb{X}_{1} and \mathbb{X}_{2} is negative. Toward that objective, prove

$$
\mathbb{E}\left[\mathbb{X}_{i} \cdot \mathbb{X}_{j}\right]=\mathbb{E}\left[\mathbb{X}_{1} \cdot \mathbb{X}_{2}\right] \leqslant \mathbb{E}\left[\mathbb{X}_{1}\right] \cdot \mathbb{E}\left[X_{2}\right]=\mathbb{E}\left[X_{i}\right] \cdot \mathbb{E}\left[X_{j}\right]
$$

