


Introduction

o Let X represent the Bern (p) random variable

o Let XM ... X(" represent n independent and identical copies
of the random variable X

o Let S, :=XM ... + X" represent the sum of these n
random variables. That is, S, is the Binomial distribution with
parameters (n, p).

@ In the previous lecture we saw that E [S,] = np by the linearity
of expectation

@ For example, if X represents a coin-toss, then S, is a random
variable representing the number of observed Heads when n
coin-tosses are performed

@ How does the random variable S, concentrate around its
mean? What is the probability of S, to be “far” from the
expected value?
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Analysis using Markov Bound

@ One can use Markov bound to deduce
P[Sy> A (np)] <

@ Can we do better?
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Analysis using Chebyshev's Inequality

By Chebyshev's Inequality, we have

IPHSn—np|>t]<

In the previous lecture we prove that Var [S,] = npg, where
g=(1-p)

@ Think: The probability of S, being © (\/W) far from the
mean is at most a constant.

Think: Can we use higher moments to get better bounds?
Think: Let (Xy,...,X,) be a joint distribution and

Sn =11 X;. Suppose the marginals X; = Bern (p) and the
random variables X; and X; are pair-wise independent when
Jj # i. Can we still apply this estimation technique?
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A Large Deviation Bound

Observe that

).pkqn—k < PS,>K < (Z)'pk.

@ Think: How to prove this claim?

@ Think: For what values of p and k is the upper bound
meaningful? Hint: Use Stirling’s formula.

@ Think: When p = 1/2, for what values of k is the upper
bound < 17
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Using Stirling’s Approximation

@ Our objective is to study the expression
"\ /n
P[S, > k] = ) -plg"
[Sh > K] ;(J p'q

where g = (1 — p) and k/n > p. This expression is known as
the upper tail of the binomial distribution

@ By Stirling approximation, we know that

n k n—k 1 ( / )
. ~— —nD
<k) pq 2nnpq exp | —nhbxrL (P,P) )
where p' = k/n, ¢ = (1 —p'), and

Dk, (a, b) = aln <Z) +(1—a)ln (i:;)

represents the Kullback—Leibler divergence. Recall that
f(n) ~ g(n) if (and only if) f(n) = (1 + o(1)) - g(n).
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Using Stirling’s Approximation

@ Therefore, we have the following lower bound

k _n—k 1 _ /
P[Sh > k] > <k>P q 7/WGXP( nDKL(p7P)>'

@ For the upper bound, we follow the strategy below.

© Consider the sequence
{(n> i i}
. p'q
i

@ We show that the following geometric sequence dominates it

k n—k i—k
{(k)pq y } |
i>k
g . p

where p = L . 2
Think: Why is p < 1 when p’ = (k/n) > p?
Think: How to prove this bound?
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Using Stirling’s Approximation [l

© Then, we have the following upper bound

1 n
PIS kgi k _n—k
[Sh > K] T (k>pq
1 1 ex(
1—p 2mnp'q P

@ Consequently, we have the following tight bounds

—nDxr, (p', P)) .

P[S, > K|

1<
ﬁ -exp (—nDk, (¢, p))

~

S.z (1 - p)ila

/
where p = % . g.
@ Observe that if p’ is a constant > p, then
© The lower and the upper bounds are within a constant factor
of each other!

@ The probability is exponentially decreasing in n.
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Using Stirling's Approximatio_

@ The conclusions are summarized in the next result

&
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Using Stirling’s Approximation

Lemma (Conclusions)

Let S, = XM ... + X" where X = Bern (p).

o
P[S, > K] < (:)pk.
(2
P[S, > K] 1
1< < )
(©)prqr=i “1=p
whereng—:-g,p’:k/n>p,q:(l—p),andq’:(l—p’).
(s}

ny n—k 1 ( ’ )
1— N« —n-D
(l)P( p) T d exp n KL(P,P) )

where Dxr, (a, b) = aln (2) + (1 — a)In (tZ) and p’ = k/n.
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Chernoff Bound: Proof

@ Let us now upper bound the probability P [Sn,p > n(p+ 8)]
using the Chernoff bound. Theupper boundd will be slightly
better than what we obtained using the naive Stirling
approximation presented above.

@ Recall that X is a r.v. over the sample space {0,1}. Moreover,
we have P[X = 1] = pand P[X = 0] =1 — p. Note that we
have E [X] = p.

@ We are studying the r.v.
Sn,p =x® + x(2) N x(n)

Each random variable X() is an independent copy of the
random variable X.

o Note that we have E [S, ,] = nE[X] = np, by the linearity of
expectation
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Chernoff Bound: Proof

Theorem (Chernoff Bound)

P [Snp = n(p +¢)] < exp (—nDxr (p + ¢, p))

Before we proceed to proving this result, let us interpret this
theorem statement. Suppose p =1/2 and t = 1/4. Then, it is
exponentially unlikely that S, , surpasses n(1/2 +1/4) = 3n/4
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Chernoff Bound: Proof [

Let us begin with the proof.
@ We are interested in upper-bounding the probability

P [Snp > n(p+¢)]
o Note that, for any positive h, we have
P [Sn,p P n(P + 5)] =P [eXp(hSnyp) > exp(hn(p + 5))]

The exact value of h will be determined later. The intuition of
using the exp(-) function is to consider all the moments of S, ,

@ Now, we apply Markov inequality to obtain

E [exp(hSn,p)]

E [exp(hSnp) > exp(hn(p+e))] < oo =y
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Chernoff Bound: Proof V4

@ Now, we need an observation. Suppose A and B are two
independent random variables. Then, we have
E [exp(A + B)| = E [exp(A)] - E [exp(B)]. We emphasize
that A and B have to be independent to apply this result.

o Note that we have S,, = > " ; X, So, we can apply the
previous observation iteratively to obtain the following result.

E [exp(hSnp)] [[LE {exp(hX("))] _ ( E [exp(hX)] )n

exp(hn(p+<)  exp(hn(p + <)) exp(h(p + <))

@ Recall that X is a random variable such that P[X =0 =1—-p
and P[X = 1] = p. So, the random variable exp(hX) is such
that P [exp(hX) = 1] =1 — p and PP [exp(hX) = exp(h)]| = p.
Therefore, we can conclude that

E [exp(hX)] = (1 —p) -1+ p-exp(h) =1— p+ pexp(h)
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Chernoff Bound: Proof

@ Substituting this value, we get

<E[exp(hX)] ) _ (1—p+pexp(h>>"

exp(h(p +¢€)) exp(h(p +¢€))

@ So, let us take a pause at this point and recall what we have
proven thus far. We have shown that, for all positive h, the
following bound holds

P [Syp = n(p+¢)] < <1 e_xri Jr(,f ixg)()h)>
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Chernoff Bound: Proof VI

@ To obtain the tightest upper-bound we should use the value of
h = h* that minimizes the right-hand size expression. For
simplicity let us make a variable substitution H = exp(h). Let
us define

1—p+pH
FH) = = —
Our objective is to find H = H* that minimizes f(H).

o Let us compute f'(H) and solve for f(H*) = 0. Note that we
have

vy P (p+e)1—p+pH)

The solution f'(H*) = 0 is given by

H*: I)—i_E .1_p.
1—p—c¢ p
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Chernoff Bound: Proof VII

We can check that, for € > 0, we have H* > 1, that is, h > 0.
We can consider the second derivative f”/(H) to prove that
this extremum is a minima.

Instead of computing f”(H), we can use a shortcut technique.
We know that at H*, the function f(H) either has a maximum
or a minimum. Moreover, there is only one extremum of the
function f(H). Note that limy_, f(H) = oo, so f(H*) must
be a minimum.
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Chernoff Bound: Proof

VIII

@ Now, let us substitute the value of h* to obtain

P [Snp = n(p +¢)]

1-p)(p+
e .
((1—p)<p+s>)"+€
p(1—p—e)

e n
<(1—p)(p+e))"+5

p(1—p—e¢)

p pte 1—p
pte l—-p—c¢

exp(—nDxr, (p+ ¢, p))
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Overview of Generalization

Our objective is to generalize the Chernoff Bound that we proved
above. Let us first recall the Chernoff bound result that we proved.

@ Let X be Bern (p)
o LetS,,= XM £ x@ 4. 4 x(0)
@ Chernoff bound states that

P [Spp = n(p+¢)] < exp(—nDkr (p + <, p))
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Overview of Generalization

We shall generalize this result in two ways

@ For 1 <i< n, let X; be an independent Bern (p;) random
variable. That is, X; be a r.v. over {0, 1} such that
P[X,’ = O] =1 — Pi and P[X,‘ = ].] = pi. Each X,’ is
independent of the other Xjs. Let S, , = X; + Xo +--- + X,,,
where p = (p1 +--- + pn)/n.
@ For1<i<n,letX;bear.v. over [0,1] such that E[X;] = p;.
Despite these two generalizations, the following bound continues to
hold true.

P [Syp = n(p +¢)] < exp(—nDkL (p + ¢, p))
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First Generalization

Let X1, X5,...X, be independent random variables such that
X; =Bern(p;), for 1 <i<n

Let p:=(p1+p2+---+pn)/n
Define Spp =X +Xo ++-- + X,

We bound the following probability. For any H > 1, we have
P [Sn,p > n(p + 5)] =P |:HSn,p > Hn(P-‘ra)}
@ Now, we apply the Markov inequality

E [HSM’} E [HZ7:1 XI} E [H,":l fo]

Sh, n(p-+e) — —
P[H P2 H k O T T )

Chernoff



First Generalization

@ Since, each X are independent of other X;s, we have

X,’ Xi
E |:Hln:1H :| . HI{,:].E |:H } . H;’:ll—p;—l-p,'H

Hnlp+e) —  Hn(p+e) Hn(p+e)

@ We apply the AM-GM inequality to conclude that

’ S 1 pitpiH
Hl—P;+PiH<< S e )
i=1

n

Equality holds if and only if all p; = p. This bound can now be
substituted to conclude

E [H7:1 HX‘} . <1—p+pH)"

Hn(p—i—a) Hp+e
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First Generalization [

@ This is identical to the bound that we had in the Chernoff
bound proof. We can use the following choice of H in the
bound above to obtain the tightest possible bound

« (p+e)(1-p)
= p(l—p—ce)

So, we get the bound

P [Spp = n(p+¢)] < exp(—nDkr (p + <, p))
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Second Generalization

o Let 1 <X; < 1bearv. such that E[X;] = p; and each X is
independent of other Xs

@ Just like the previous setting, we have
Spp = X1 +Xo 4+ + X, where p = (p1 + p2 +---+ pn)/n
@ Note that if we prove the following bound, then we shall be

done
E [HX’] <1l-pi+pH

We can use this bound in the previous proof and arrive at the
identical upper-bound.
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Second Generalization [

The proof follows from the following

E [HX/'] = 3 PXi=x H
x€[0,1]
Z P [Xl _ X] . H(lfx)»0+x»1
x€[0,1]
Z PIX;=x]- ((1 —x)-H® +x- Hl) , (By Jensen’s)
x€[0,1]
> P =x]- (1 - x+ xH)
x€[0,1]
=Y PXi=x]- Y PXi=x]'x+H Y PXi=x] x
x€[0,1] x€[0,1] x€[0,1]
=1-—pi+ piH, (Because E[Xi] = pi)

N

The appendix provides additional intuition for this analysis.
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Conclusion

o Let 0 < X; <1 are independent random variables, for
1<i<n Let p=E[X]], for 1 < i< n. Define
Sn,p =X+ X0+ + X, where p := (Pl +-o+ Pn)/”-

Theorem (Chernoff Bound)

P [Snp = n(p+¢)] < exp(—nDkL (p + €, p))

@ Objective of the next lecture. We shall obtain easier to
compute, albeit weaker, upper bounds on this probability.
These bounds shall rely on the following inequalities

Q Dki(p+e,p) = 2¢2,

Q@ Dxw (p(1+¢),p) = 2(1T€/3), and

@ Dk, (1 —p(l—¢),1- p) > pe?)/2.
Check them out at:
https://www.desmos.com/calculator/pyessio3v2
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https://www.desmos.com/calculator/pyessio3v2

Appendix: Intuition for the Analysis

o Let X be an r.v. over [a, b] such that E [X] =

o Let f: R — R be a concave upwards function (that is, it looks
like f(x) = x?)

e Jensen's inequality states that f(E[X]) < E [f(X)], and
equality holds if and only if X has its entire probability mass at
pt. Therefore, we can conclude that f(u) < E [£(X)]

@ So, we have a lower-bound on E [f(X)]. Now, we are
interested in obtaining an upper-bound on E [f(X)]

@ For the upper-bound note that is X deposits more probability
mass away from p, then E [f(X)] increases. In fact, increasing
the mass further away increases E [f(X)] more. So, the
maximum value of E [f(X)] is achieved when X deposits the
entire probability mass either at a or b only. Let us find such a
probability distribution under the constraint that E [X] = u
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Appendix: Intuition for the Analysis

@ Suppose P[X* = a] = p. Then, we have P[X* = b] =1 — p.
Further, the constraint E [X*] = u becomes
pa+ (1 — p)b = p. Solving, we get

£=2. For this probability, we get

Therefore, we get 1 — p =

E [f(X*)] = %f(a) + Ef(b)

So, we expect the following bound to hold for a general r.v. X

E[f(X)] <E[f(X*)] =

This is not a formal proof. Let us prove this intuition formally.
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Appendix: Intuition for the Analysis [

o Let X be an r.v. over [a, b] with E [X] = p. Note that by
Jensen’s inequality, we have

b—x X—a b—x X—a
= <
f(x) f<b—aa+b—ab) b_af(a)—i—b_af(b)

Now, we take expectation on both sides to conclude that

E[f(X)] <E [b_}jf(a) + if: :f(b)}
_ b-E[X] E[X]—a
=5, f@+— ——f(b)
_ %f(a) +B=2¢(b)
@ To conclude, we have the following bound.
) <E[F(X)] < o Lr(a) + 2= 2r(p)

Chernoff



