
Lecture 4: Chernoff Bound

Chernoff



Introduction

Let X represent the Bern (p) random variable
Let X(1), . . . ,X(n) represent n independent and identical copies
of the random variable X
Let Sn := X(1) +· · ·+ X(n) represent the sum of these n
random variables. That is, Sn is the Binomial distribution with
parameters (n, p).
In the previous lecture we saw that E [Sn] = np by the linearity
of expectation
For example, if X represents a coin-toss, then Sn is a random
variable representing the number of observed Heads when n
coin-tosses are performed
How does the random variable Sn concentrate around its
mean? What is the probability of Sn to be “far” from the
expected value?
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Analysis using Markov Bound

One can use Markov bound to deduce

P
[
Sn > λ · (np)

]
6

1
λ
.

Can we do better?
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Analysis using Chebyshev’s Inequality

By Chebyshev’s Inequality, we have

P
[
|Sn − np| > t

]
6

Var [Sn]

t2
.

In the previous lecture we prove that Var [Sn] = npq, where
q = (1− p)

Think: The probability of Sn being Θ
(√

npq
)
far from the

mean is at most a constant.
Think: Can we use higher moments to get better bounds?
Think: Let (X1, . . . ,Xn) be a joint distribution and
Sn =

∑n
i=1 Xi . Suppose the marginals Xi = Bern (p) and the

random variables Xi and Xj are pair-wise independent when
j 6= i . Can we still apply this estimation technique?
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A Large Deviation Bound

Observe that

P [Sn > k] =
n∑

i=k

(
n

i

)
· piqn−i ,

where q = (1− p).

Claim (
n

k

)
· pkqn−k 6 P [Sn > k] 6

(
n

k

)
· pk .

Think: How to prove this claim?
Think: For what values of p and k is the upper bound
meaningful? Hint: Use Stirling’s formula.
Think: When p = 1/2, for what values of k is the upper
bound < 1?
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Using Stirling’s Approximation I

Our objective is to study the expression

P [Sn > k] =
n∑

i=k

(
n

i

)
· piqn−i ,

where q = (1− p) and k/n > p. This expression is known as
the upper tail of the binomial distribution
By Stirling approximation, we know that(

n

k

)
· pkqn−k ∼ 1√

2πnp′q′
exp

(
−nDKL

(
p′, p

))
,

where p′ = k/n, q′ = (1− p′), and

DKL (a, b) = a ln

(
a

b

)
+ (1− a) ln

(
1− a

1− b

)
represents the Kullback–Leibler divergence. Recall that
f (n) ∼ g(n) if (and only if) f (n) = (1 + o(1)) · g(n).
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Using Stirling’s Approximation II

Therefore, we have the following lower bound

P [Sn > k] >

(
n

k

)
pkqn−k ∼ 1√

2πnp′q′
exp

(
−nDKL

(
p′, p

))
.

For the upper bound, we follow the strategy below.
1 Consider the sequence {(

n

i

)
piqi

}
i>k

.

2 We show that the following geometric sequence dominates it{(
n

k

)
pkqn−k · ρi−k

}
i>k

,

where ρ = q′

p′ · pq .
Think: Why is ρ < 1 when p′ = (k/n) > p?
Think: How to prove this bound?
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Using Stirling’s Approximation III

3 Then, we have the following upper bound

P [Sn > k] 6
1

1− ρ
·
(
n

k

)
pkqn−k

∼ 1
1− ρ

· 1√
2πnp′q′

exp
(
−nDKL

(
p′, p

))
.

Consequently, we have the following tight bounds

1 .
P [Sn > k]

1√
2πnp′q′ · exp

(
−nDKL (p′, p)

) . (1− ρ)−1,

where ρ = q′

p′ ·
p
q .

Observe that if p′ is a constant > p, then
1 The lower and the upper bounds are within a constant factor

of each other!
2 The probability is exponentially decreasing in n.
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Using Stirling’s Approximation IV

The conclusions are summarized in the next result
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Using Stirling’s Approximation V

Lemma (Conclusions)

Let Sn = X(1) +· · ·+ X(n), where X = Bern (p).
1

P [Sn > k] 6

(
n

k

)
pk .

2

1 6
P [Sn > k](
n
k

)
pkqn−k

6
1

1− ρ
,

where ρ = q′

p′ · pq , p′ = k/n > p, q = (1− p), and q′ = (1− p′).

3 (
n

k

)
pk(1− p)n−k ∼ 1√

2πnp′q′
· exp

(
−n ·DKL

(
p′, p

))
,

where DKL (a, b) = a ln
(
a
b

)
+ (1− a) ln

(
1−a
1−b

)
and p′ = k/n.
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Chernoff Bound: Proof I

Let us now upper bound the probability P
[
Sn,p > n(p + ε)

]
using the Chernoff bound. Theupper boundd will be slightly
better than what we obtained using the naïve Stirling
approximation presented above.

Recall that X is a r.v. over the sample space {0, 1}. Moreover,
we have P [X = 1] = p and P [X = 0] = 1− p. Note that we
have E [X] = p.

We are studying the r.v.

Sn,p = X(1) + X(2) +· · ·+ X(n)

Each random variable X(i) is an independent copy of the
random variable X.
Note that we have E

[
Sn,p

]
= nE [X] = np, by the linearity of

expectation
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Chernoff Bound: Proof II

Theorem (Chernoff Bound)

P
[
Sn,p > n(p + ε)

]
6 exp

(
−nDKL (p + ε, p)

)
Before we proceed to proving this result, let us interpret this
theorem statement. Suppose p = 1/2 and t = 1/4. Then, it is
exponentially unlikely that Sn,p surpasses n(1/2 + 1/4) = 3n/4
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Chernoff Bound: Proof III

Let us begin with the proof.

We are interested in upper-bounding the probability

P
[
Sn,p > n(p + ε)

]
Note that, for any positive h, we have

P
[
Sn,p > n(p + ε)

]
= P

[
exp(hSn,p) > exp(hn(p + ε))

]
The exact value of h will be determined later. The intuition of
using the exp(·) function is to consider all the moments of Sn,p
Now, we apply Markov inequality to obtain

P
[
exp(hSn,p) > exp(hn(p + ε))

]
6

E
[
exp(hSn,p)

]
exp(hn(p + ε))
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Chernoff Bound: Proof IV

Now, we need an observation. Suppose A and B are two
independent random variables. Then, we have
E
[
exp(A + B)

]
= E

[
exp(A)

]
· E
[
exp(B)

]
. We emphasize

that A and B have to be independent to apply this result.

Note that we have Sn,p =
∑n

i=1 X(i). So, we can apply the
previous observation iteratively to obtain the following result.

E
[
exp(hSn,p)

]
exp(hn(p + ε))

=

∏n
i=1 E

[
exp(hX(i))

]
exp(hn(p + ε))

=

(
E
[
exp(hX)

]
exp(h(p + ε))

)n

Recall that X is a random variable such that P [X = 0] = 1− p
and P [X = 1] = p. So, the random variable exp(hX) is such
that P

[
exp(hX) = 1

]
= 1− p and P

[
exp(hX) = exp(h)

]
= p.

Therefore, we can conclude that

E
[
exp(hX)

]
= (1− p) · 1 + p · exp(h) = 1− p + p exp(h)
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Chernoff Bound: Proof V

Substituting this value, we get(
E
[
exp(hX)

]
exp(h(p + ε))

)n

=

(
1− p + p exp(h)

exp(h(p + ε))

)n

So, let us take a pause at this point and recall what we have
proven thus far. We have shown that, for all positive h, the
following bound holds

P
[
Sn,p > n(p + ε)

]
6

(
1− p + p exp(h)

exp(h(p + ε))

)n

Chernoff



Chernoff Bound: Proof VI

To obtain the tightest upper-bound we should use the value of
h = h∗ that minimizes the right-hand size expression. For
simplicity let us make a variable substitution H = exp(h). Let
us define

f (H) =
1− p + pH

Hp+ε

Our objective is to find H = H∗ that minimizes f (H).

Let us compute f ′(H) and solve for f ′(H∗) = 0. Note that we
have

f ′(H) =
p

Hp+ε
− (p + ε)(1− p + pH)

Hp+ε+1

The solution f ′(H∗) = 0 is given by

H∗ =
p + ε

1− p − ε
· 1− p

p
.
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Chernoff Bound: Proof VII

We can check that, for ε > 0, we have H∗ > 1, that is, h > 0.
We can consider the second derivative f ′′(H) to prove that
this extremum is a minima.
Instead of computing f ′′(H), we can use a shortcut technique.
We know that at H∗, the function f (H) either has a maximum
or a minimum. Moreover, there is only one extremum of the
function f (H). Note that limH→∞ f (H) =∞, so f (H∗) must
be a minimum.
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Chernoff Bound: Proof VIII

Now, let us substitute the value of h∗ to obtain

P
[
Sn,p > n(p + ε)

]
6

1− p + (1−p)(p+ε)
1−p−ε(

(1−p)(p+ε)
p(1−p−ε)

)p+ε


n

=

 1−p
1−p−ε(

(1−p)(p+ε)
p(1−p−ε)

)p+ε


n

=

((
p

p + ε

)p+ε( 1− p

1− p − ε

)1−p−ε
)n

= exp(−nDKL (p + ε, p))
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Overview of Generalization I

Our objective is to generalize the Chernoff Bound that we proved
above. Let us first recall the Chernoff bound result that we proved.

Let X be Bern (p)

Let Sn,p = X(1) + X(2) +· · ·+ X(n)

Chernoff bound states that

P
[
Sn,p > n(p + ε)

]
6 exp(−nDKL (p + ε, p))
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Overview of Generalization II

We shall generalize this result in two ways
1 For 1 6 i 6 n, let Xi be an independent Bern (pi ) random

variable. That is, Xi be a r.v. over {0, 1} such that
P [Xi = 0] = 1− pi and P [Xi = 1] = pi . Each Xi is
independent of the other Xjs. Let Sn,p = X1 + X2 +· · ·+ Xn,
where p = (p1 +· · ·+ pn)/n.

2 For 1 6 i 6 n, let Xi be a r.v. over [0, 1] such that E [Xi ] = pi .

Despite these two generalizations, the following bound continues to
hold true.

P
[
Sn,p > n(p + ε)

]
6 exp(−nDKL (p + ε, p))
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First Generalization I

Let X1,X2, . . .Xn be independent random variables such that
Xi = Bern (pi ), for 1 6 i 6 n

Let p := (p1 + p2 +· · ·+ pn)/n

Define Sn,p = X1 + X2 +· · ·+ Xn

We bound the following probability. For any H > 1, we have

P
[
Sn,p > n(p + ε)

]
= P

[
HSn,p > Hn(p+ε)

]
Now, we apply the Markov inequality

P
[
HSn,p > Hn(p+ε)

]
6

E
[
HSn,p

]
Hn(p+ε)

=
E
[
H

∑n
i=1 Xi

]
Hn(p+ε)

=
E
[∏n

i=1 H
Xi

]
Hn(p+ε)
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First Generalization II

Since, each Xi are independent of other Xjs, we have

E
[∏n

i=1 H
Xi

]
Hn(p+ε)

=

∏n
i=1 E

[
HXi

]
Hn(p+ε)

=

∏n
i=1 1− pi + piH

Hn(p+ε)

We apply the AM-GM inequality to conclude that

n∏
i=1

1− pi + piH 6

(∑n
i=1 1− pi + piH

n

)n

Equality holds if and only if all pi = p. This bound can now be
substituted to conclude

E
[∏n

i=1 H
Xi

]
Hn(p+ε)

6

(
1− p + pH

Hp+ε

)n
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First Generalization III

This is identical to the bound that we had in the Chernoff
bound proof. We can use the following choice of H in the
bound above to obtain the tightest possible bound

H∗ =
(p + ε)(1− p)

p(1− p − ε)

So, we get the bound

P
[
Sn,p > n(p + ε)

]
6 exp(−nDKL (p + ε, p))
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Second Generalization I

Let 1 6 Xi 6 1 be a r.v. such that E [Xi ] = pi and each Xi is
independent of other Xjs

Just like the previous setting, we have
Sn,p = X1 + X2 +· · ·+ Xn, where p = (p1 + p2 +· · ·+ pn)/n

Note that if we prove the following bound, then we shall be
done

E
[
HXi

]
6 1− pi + piH

We can use this bound in the previous proof and arrive at the
identical upper-bound.
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Second Generalization II

The proof follows from the following

E
[
HXi

]
=
∑

x∈[0,1]

P [Xi = x ] · Hx

=
∑

x∈[0,1]

P [Xi = x ] · H(1−x)·0+x·1

6
∑

x∈[0,1]

P [Xi = x ] ·
(
(1 − x) · H0 + x · H1

)
, (By Jensen’s)

=
∑

x∈[0,1]

P [Xi = x ] · (1 − x + xH)

=
∑

x∈[0,1]

P [Xi = x ]−
∑

x∈[0,1]

P [Xi = x ] · x + H
∑

x∈[0,1]

P [Xi = x ] · x

= 1 − pi + piH, (Because E [Xi ] = pi )

The appendix provides additional intuition for this analysis.
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Conclusion

Let 0 6 Xi 6 1 are independent random variables, for
1 6 i 6 n. Let pi = E [Xi ], for 1 6 i 6 n. Define
Sn,p := X1 + X2 +· · ·+ Xn, where p := (p1 +· · ·+ pn)/n.

Theorem (Chernoff Bound)

P
[
Sn,p > n(p + ε)

]
6 exp(−nDKL (p + ε, p))

Objective of the next lecture. We shall obtain easier to
compute, albeit weaker, upper bounds on this probability.
These bounds shall rely on the following inequalities

1 DKL (p + ε, p) > 2ε2,
2 DKL

(
p(1 + ε), p

)
> pε2

2(1+ε/3)
, and

3 DKL
(
1− p(1− ε), 1− p

)
> pε2/2.

Check them out at:
https://www.desmos.com/calculator/pyessio3v2
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Appendix: Intuition for the Analysis I

Let X be an r.v. over [a, b] such that E [X] = µ

Let f : R→ R be a concave upwards function (that is, it looks
like f (x) = x2)

Jensen’s inequality states that f (E [X]) 6 E
[
f (X)

]
, and

equality holds if and only if X has its entire probability mass at
µ. Therefore, we can conclude that f (µ) 6 E

[
f (X)

]
So, we have a lower-bound on E

[
f (X)

]
. Now, we are

interested in obtaining an upper-bound on E
[
f (X)

]
For the upper-bound note that is X deposits more probability
mass away from µ, then E

[
f (X)

]
increases. In fact, increasing

the mass further away increases E
[
f (X)

]
more. So, the

maximum value of E
[
f (X)

]
is achieved when X deposits the

entire probability mass either at a or b only. Let us find such a
probability distribution under the constraint that E [X] = µ
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Appendix: Intuition for the Analysis II

Suppose P [X∗ = a] = p. Then, we have P [X∗ = b] = 1− p.
Further, the constraint E [X∗] = µ becomes
pa + (1− p)b = µ. Solving, we get

p =
b − µ
b − a

Therefore, we get 1− p = µ−a
b−a . For this probability, we get

E
[
f (X∗)

]
=

b − µ
b − a

f (a) +
µ− a

b − a
f (b)

So, we expect the following bound to hold for a general r.v. X

E
[
f (X)

]
6 E

[
f (X∗)

]
=

b − µ
b − a

f (a) +
µ− a

b − a
f (b)

This is not a formal proof. Let us prove this intuition formally.
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Appendix: Intuition for the Analysis III

Let X be an r.v. over [a, b] with E [X] = µ. Note that by
Jensen’s inequality, we have

f (x) = f

(
b − x

b − a
a +

x − a

b − a
b

)
6

b − x

b − a
f (a) +

x − a

b − a
f (b)

Now, we take expectation on both sides to conclude that

E
[
f (X)

]
6 E

[
b − X
b − a

f (a) +
X− a

b − a
f (b)

]
=

b − E [X]

b − a
f (a) +

E [X]− a

b − a
f (b)

=
b − µ
b − a

f (a) +
µ− a

b − a
f (b)

To conclude, we have the following bound.

f (µ) 6 E
[
f (X)

]
6

b − µ
b − a

f (a) +
µ− a

b − a
f (b)
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