Lecture 4: Chernoff Bound

- Let \mathbb{X} represent the $\operatorname{Bern}(p)$ random variable
- Let $\mathbb{X}^{(1)}, \ldots, \mathbb{X}^{(n)}$ represent n independent and identical copies of the random variable \mathbb{X}
- Let $\mathbb{S}_{n}:=\mathbb{X}^{(1)}+\cdots+\mathbb{X}^{(n)}$ represent the sum of these n random variables. That is, \mathbb{S}_{n} is the Binomial distribution with parameters (n, p).
- In the previous lecture we saw that $\mathbb{E}\left[\mathbb{S}_{n}\right]=n p$ by the linearity of expectation
- For example, if \mathbb{X} represents a coin-toss, then \mathbb{S}_{n} is a random variable representing the number of observed Heads when n coin-tosses are performed
- How does the random variable \mathbb{S}_{n} concentrate around its mean? What is the probability of \mathbb{S}_{n} to be "far" from the expected value?

Analysis using Markov Bound

- One can use Markov bound to deduce

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant \lambda \cdot(n p)\right] \leqslant \frac{1}{\lambda}
$$

- Can we do better?

Analysis using Chebyshev's Inequality

- By Chebyshev's Inequality, we have

$$
\mathbb{P}\left[\left|\mathbb{S}_{n}-n p\right| \geqslant t\right] \leqslant \frac{\operatorname{Var}\left[\mathbb{S}_{n}\right]}{t^{2}}
$$

- In the previous lecture we prove that $\operatorname{Var}\left[\mathbb{S}_{n}\right]=n p q$, where $q=(1-p)$
- Think: The probability of \mathbb{S}_{n} being $\Theta(\sqrt{n p q})$ far from the mean is at most a constant.
- Think: Can we use higher moments to get better bounds?
- Think: Let $\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$ be a joint distribution and $\mathbb{S}_{n}=\sum_{i=1}^{n} \mathbb{X}_{i}$. Suppose the marginals $\mathbb{X}_{i}=\operatorname{Bern}(p)$ and the random variables \mathbb{X}_{i} and \mathbb{X}_{j} are pair-wise independent when $j \neq i$. Can we still apply this estimation technique?

A Large Deviation Bound

Observe that

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant k\right]=\sum_{i=k}^{n}\binom{n}{i} \cdot p^{i} q^{n-i}
$$

where $q=(1-p)$.

Claim

$$
\binom{n}{k} \cdot p^{k} q^{n-k} \leqslant \mathbb{P}\left[\mathbb{S}_{n} \geqslant k\right] \leqslant\binom{ n}{k} \cdot p^{k} .
$$

- Think: How to prove this claim?
- Think: For what values of p and k is the upper bound meaningful? Hint: Use Stirling's formula.
- Think: When $p=1 / 2$, for what values of k is the upper bound <1 ?

Using Stirling's Approximation

- Our objective is to study the expression

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant k\right]=\sum_{i=k}^{n}\binom{n}{i} \cdot p^{i} q^{n-i},
$$

where $q=(1-p)$ and $k / n>p$. This expression is known as the upper tail of the binomial distribution

- By Stirling approximation, we know that

$$
\binom{n}{k} \cdot p^{k} q^{n-k} \sim \frac{1}{\sqrt{2 \pi n p^{\prime} q^{\prime}}} \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(p^{\prime}, p\right)\right)
$$

where $p^{\prime}=k / n, q^{\prime}=\left(1-p^{\prime}\right)$, and

$$
\mathrm{D}_{\mathrm{KL}}(a, b)=a \ln \left(\frac{a}{b}\right)+(1-a) \ln \left(\frac{1-a}{1-b}\right)
$$

represents the Kullback-Leibler divergence. Recall that $f(n) \sim g(n)$ if (and only if) $f(n)=(1+o(1)) ; g(n)$.

Using Stirling's Approximation

- Therefore, we have the following lower bound

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant k\right] \geqslant\binom{ n}{k} p^{k} q^{n-k} \sim \frac{1}{\sqrt{2 \pi n p^{\prime} q^{\prime}}} \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(p^{\prime}, p\right)\right) .
$$

- For the upper bound, we follow the strategy below.
(1) Consider the sequence

$$
\left\{\binom{n}{i} p^{i} q^{i}\right\}_{i \geqslant k}
$$

(2) We show that the following geometric sequence dominates it

$$
\left\{\binom{n}{k} p^{k} q^{n-k} \cdot \rho^{i-k}\right\}_{i \geqslant k}
$$

where $\rho=\frac{q^{\prime}}{p^{\prime}} \cdot \frac{p}{q}$.
Think: Why is $\rho<1$ when $p^{\prime}=(k / n)>p$?
Think: How to prove this bound?

Using Stirling's Approximation

(3) Then, we have the following upper bound

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n}>k\right] & \leqslant \frac{1}{1-\rho} \cdot\binom{n}{k} p^{k} q^{n-k} \\
& \sim \frac{1}{1-\rho} \cdot \frac{1}{\sqrt{2 \pi n p^{\prime} q^{\prime}}} \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(p^{\prime}, p\right)\right) .
\end{aligned}
$$

- Consequently, we have the following tight bounds

$$
1 \lesssim \frac{\mathbb{P}\left[\mathbb{S}_{n} \geqslant k\right]}{\frac{1}{\sqrt{2 \pi n p^{\prime} q^{\prime}}} \cdot \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(p^{\prime}, p\right)\right)} \lesssim(1-\rho)^{-1}
$$

where $\rho=\frac{q^{\prime}}{p^{\prime}} \cdot \frac{p}{q}$.

- Observe that if p^{\prime} is a constant $>p$, then
(1) The lower and the upper bounds are within a constant factor of each other!
(2) The probability is exponentially decreasing in n.
- The conclusions are summarized in the next result

Using Stirling's Approximation

Lemma (Conclusions)

Let $\mathbb{S}_{n}=\mathbb{X}^{(1)}+\cdots+\mathbb{X}^{(n)}$, where $\mathbb{X}=\operatorname{Bern}(p)$.
(1)

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant k\right] \leqslant\binom{ n}{k} p^{k}
$$

(2)

$$
1 \leqslant \frac{\mathbb{P}\left[\mathbb{S}_{n} \geqslant k\right]}{\binom{n}{k} p^{k} q^{n-k}} \leqslant \frac{1}{1-\rho}
$$

where $\rho=\frac{q^{\prime}}{p^{\prime}} \cdot \frac{p}{q}, p^{\prime}=k / n>p, q=(1-p)$, and $q^{\prime}=\left(1-p^{\prime}\right)$.
(3)

$$
\binom{n}{k} p^{k}(1-p)^{n-k} \sim \frac{1}{\sqrt{2 \pi n p^{\prime} q^{\prime}}} \cdot \exp \left(-n \cdot \mathrm{D}_{\mathrm{KL}}\left(p^{\prime}, p\right)\right)
$$

where $\mathrm{D}_{\mathrm{KL}}(a, b)=a \ln \left(\frac{a}{b}\right)+(1-a) \ln \left(\frac{1-a}{1-b}\right)$ and $p^{\prime}=k / n$.

Chernoff Bound: Proof

- Let us now upper bound the probability $\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right]$ using the Chernoff bound. Theupper boundd will be slightly better than what we obtained using the naïve Stirling approximation presented above.
- Recall that \mathbb{X} is a r.v. over the sample space $\{0,1\}$. Moreover, we have $\mathbb{P}[\mathbb{X}=1]=p$ and $\mathbb{P}[\mathbb{X}=0]=1-p$. Note that we have $\mathbb{E}[\mathbb{X}]=p$.
- We are studying the r.v.

$$
\mathbb{S}_{n, p}=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+\cdots+\mathbb{X}^{(n)}
$$

Each random variable $\mathbb{X}^{(i)}$ is an independent copy of the random variable \mathbb{X}.

- Note that we have $\mathbb{E}\left[\mathbb{S}_{n, p}\right]=n \mathbb{E}[\mathbb{X}]=n p$, by the linearity of expectation

Chernoff Bound: Proof

Theorem (Chernoff Bound)

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

Before we proceed to proving this result, let us interpret this theorem statement. Suppose $p=1 / 2$ and $t=1 / 4$. Then, it is exponentially unlikely that $\mathbb{S}_{n, p}$ surpasses $n(1 / 2+1 / 4)=3 n / 4$

Let us begin with the proof.

- We are interested in upper-bounding the probability

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right]
$$

- Note that, for any positive h, we have

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right]=\mathbb{P}\left[\exp \left(h \mathbb{S}_{n, p}\right) \geqslant \exp (h n(p+\varepsilon))\right]
$$

The exact value of h will be determined later. The intuition of using the $\exp (\cdot)$ function is to consider all the moments of $\mathbb{S}_{n, p}$

- Now, we apply Markov inequality to obtain

$$
\mathbb{P}\left[\exp \left(h \mathbb{S}_{n, p}\right) \geqslant \exp (h n(p+\varepsilon))\right] \leqslant \frac{\mathbb{E}\left[\exp \left(h \mathbb{S}_{n, p}\right)\right]}{\exp (h n(p+\varepsilon))}
$$

- Now, we need an observation. Suppose \mathbb{A} and \mathbb{B} are two independent random variables. Then, we have $\mathbb{E}[\exp (\mathbb{A}+\mathbb{B})]=\mathbb{E}[\exp (\mathbb{A})] \cdot \mathbb{E}[\exp (\mathbb{B})]$. We emphasize that \mathbb{A} and \mathbb{B} have to be independent to apply this result.
- Note that we have $\mathbb{S}_{n, p}=\sum_{i=1}^{n} \mathbb{X}^{(i)}$. So, we can apply the previous observation iteratively to obtain the following result.

$$
\frac{\mathbb{E}\left[\exp \left(h \mathbb{S}_{n, p}\right)\right]}{\exp (h n(p+\varepsilon))}=\frac{\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(h \mathbb{X}^{(i)}\right)\right]}{\exp (h n(p+\varepsilon))}=\left(\frac{\mathbb{E}[\exp (h \mathbb{X})]}{\exp (h(p+\varepsilon))}\right)^{n}
$$

- Recall that \mathbb{X} is a random variable such that $\mathbb{P}[\mathbb{X}=0]=1-p$ and $\mathbb{P}[\mathbb{X}=1]=p$. So, the random variable $\exp (h \mathbb{X})$ is such that $\mathbb{P}[\exp (h \mathbb{X})=1]=1-p$ and $\mathbb{P}[\exp (h \mathbb{X})=\exp (h)]=p$. Therefore, we can conclude that

$$
\mathbb{E}[\exp (h \mathbb{X})]=(1-p) \cdot 1+p \cdot \exp (h)=1-p+p \exp (h)
$$

Chernoff Bound: Proof

- Substituting this value, we get

$$
\left(\frac{\mathbb{E}[\exp (h \mathbb{X})]}{\exp (h(p+\varepsilon))}\right)^{n}=\left(\frac{1-p+p \exp (h)}{\exp (h(p+\varepsilon))}\right)^{n}
$$

- So, let us take a pause at this point and recall what we have proven thus far. We have shown that, for all positive h, the following bound holds

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant\left(\frac{1-p+p \exp (h)}{\exp (h(p+\varepsilon))}\right)^{n}
$$

Chernoff Bound: Proof

- To obtain the tightest upper-bound we should use the value of $h=h^{*}$ that minimizes the right-hand size expression. For simplicity let us make a variable substitution $H=\exp (h)$. Let us define

$$
f(H)=\frac{1-p+p H}{H^{p+\varepsilon}}
$$

Our objective is to find $H=H^{*}$ that minimizes $f(H)$.

- Let us compute $f^{\prime}(H)$ and solve for $f^{\prime}\left(H^{*}\right)=0$. Note that we have

$$
f^{\prime}(H)=\frac{p}{H^{p+\varepsilon}}-\frac{(p+\varepsilon)(1-p+p H)}{H^{p+\varepsilon+1}}
$$

The solution $f^{\prime}\left(H^{*}\right)=0$ is given by

$$
H^{*}=\frac{p+\varepsilon}{1-p-\varepsilon} \cdot \frac{1-p}{p}
$$

Chernoff Bound: Proof

We can check that, for $\varepsilon>0$, we have $H^{*}>1$, that is, $h>0$. We can consider the second derivative $f^{\prime \prime}(H)$ to prove that this extremum is a minima.
Instead of computing $f^{\prime \prime}(H)$, we can use a shortcut technique. We know that at H^{*}, the function $f(H)$ either has a maximum or a minimum. Moreover, there is only one extremum of the function $f(H)$. Note that $\lim _{H \rightarrow \infty} f(H)=\infty$, so $f\left(H^{*}\right)$ must be a minimum.

Chernoff Bound: Proof

- Now, let us substitute the value of h^{*} to obtain

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] & \leqslant\left(\frac{1-p+\frac{(1-p)(p+\varepsilon)}{1-p-\varepsilon}}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n} \\
& =\left(\frac{\frac{1-p}{1-p-\varepsilon}}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n} \\
& =\left(\left(\frac{p}{p+\varepsilon}\right)^{p+\varepsilon}\left(\frac{1-p}{1-p-\varepsilon}\right)^{1-p-\varepsilon}\right)^{n} \\
& =\exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
\end{aligned}
$$

Overview of Generalization

Our objective is to generalize the Chernoff Bound that we proved above. Let us first recall the Chernoff bound result that we proved.

- Let \mathbb{X} be $\operatorname{Bern}(p)$
- Let $\mathbb{S}_{n, p}=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+\cdots+\mathbb{X}^{(n)}$
- Chernoff bound states that

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

We shall generalize this result in two ways
(1) For $1 \leqslant i \leqslant n$, let \mathbb{X}_{i} be an independent $\operatorname{Bern}\left(p_{i}\right)$ random variable. That is, \mathbb{X}_{i} be a r.v. over $\{0,1\}$ such that $\mathbb{P}\left[\mathbb{X}_{i}=0\right]=1-p_{i}$ and $\mathbb{P}\left[\mathbb{X}_{i}=1\right]=p_{i}$. Each \mathbb{X}_{i} is independent of the other $\mathbb{X}_{j} \mathrm{~s}$. Let $\mathbb{S}_{n, p}=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$, where $p=\left(p_{1}+\cdots+p_{n}\right) / n$.
(2) For $1 \leqslant i \leqslant n$, let \mathbb{X}_{i} be a r.v. over $[0,1]$ such that $\mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}$.

Despite these two generalizations, the following bound continues to hold true.

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

- Let $X_{1}, X_{2}, \ldots \mathbb{X}_{n}$ be independent random variables such that $\mathbb{X}_{i}=\operatorname{Bern}\left(p_{i}\right)$, for $1 \leqslant i \leqslant n$
- Let $p:=\left(p_{1}+p_{2}+\cdots+p_{n}\right) / n$
- Define $\mathbb{S}_{n, p}=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$
- We bound the following probability. For any $H>1$, we have

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right]=\mathbb{P}\left[H^{\mathbb{S}_{n, p}} \geqslant H^{n(p+\varepsilon)}\right]
$$

- Now, we apply the Markov inequality

$$
\mathbb{P}\left[H^{\mathbb{S}_{n, p}} \geqslant H^{n(p+\varepsilon)}\right] \leqslant \frac{\mathbb{E}\left[H^{\mathbb{S}_{n, p}}\right]}{H^{n(p+\varepsilon)}}=\frac{\mathbb{E}\left[H^{\sum_{i=1}^{n} \mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}=\frac{\mathbb{E}\left[\prod_{i=1}^{n} H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}
$$

- Since, each \mathbb{X}_{i} are independent of other $\mathbb{X}_{j} s$, we have

$$
\frac{\mathbb{E}\left[\prod_{i=1}^{n} H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}=\frac{\prod_{i=1}^{n} \mathbb{E}\left[H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}=\frac{\prod_{i=1}^{n} 1-p_{i}+p_{i} H}{H^{n(p+\varepsilon)}}
$$

- We apply the AM-GM inequality to conclude that

$$
\prod_{i=1}^{n} 1-p_{i}+p_{i} H \leqslant\left(\frac{\sum_{i=1}^{n} 1-p_{i}+p_{i} H}{n}\right)^{n}
$$

Equality holds if and only if all $p_{i}=p$. This bound can now be substituted to conclude

$$
\frac{\mathbb{E}\left[\prod_{i=1}^{n} H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}} \leqslant\left(\frac{1-p+p H}{H^{p+\varepsilon}}\right)^{n}
$$

- This is identical to the bound that we had in the Chernoff bound proof. We can use the following choice of H in the bound above to obtain the tightest possible bound

$$
H^{*}=\frac{(p+\varepsilon)(1-p)}{p(1-p-\varepsilon)}
$$

So, we get the bound

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

- Let $1 \leqslant \mathbb{X}_{i} \leqslant 1$ be a r.v. such that $\mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}$ and each \mathbb{X}_{i} is independent of other $\mathbb{X}_{j} s$
- Just like the previous setting, we have $\mathbb{S}_{n, p}=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$, where $p=\left(p_{1}+p_{2}+\cdots+p_{n}\right) / n$
- Note that if we prove the following bound, then we shall be done

$$
\mathbb{E}\left[H^{\mathbb{X}_{i}}\right] \leqslant 1-p_{i}+p_{i} H
$$

We can use this bound in the previous proof and arrive at the identical upper-bound.

The proof follows from the following

$$
\begin{align*}
\mathbb{E}\left[H^{\mathbb{X}_{i}}\right] & =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot H^{\times} \\
& =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot H^{(1-x) \cdot 0+x \cdot 1} \\
& \leqslant \sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot\left((1-x) \cdot H^{0}+x \cdot H^{1}\right), \quad \text { (By Jensen's) } \tag{ByJensen's}\\
& =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot(1-x+x H) \\
& =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right]-\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot x+H \sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot x \\
& \left.=1-p_{i}+p_{i} H, \quad \text { (Because } \mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}\right)
\end{align*}
$$

The appendix provides additional intuition for this analysis.

Conclusion

- Let $0 \leqslant \mathbb{X}_{i} \leqslant 1$ are independent random variables, for $1 \leqslant i \leqslant n$. Let $p_{i}=\mathbb{E}\left[\mathbb{X}_{i}\right]$, for $1 \leqslant i \leqslant n$. Define $\mathbb{S}_{n, p}:=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$, where $p:=\left(p_{1}+\cdots+p_{n}\right) / n$.

Theorem (Chernoff Bound)

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

- Objective of the next lecture. We shall obtain easier to compute, albeit weaker, upper bounds on this probability. These bounds shall rely on the following inequalities
(1) $\mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p) \geqslant 2 \varepsilon^{2}$,
(2) $\mathrm{D}_{\mathrm{KL}}(p(1+\varepsilon), p) \geqslant \frac{p \varepsilon^{2}}{2(1+\varepsilon / 3)}$, and
(3) $\mathrm{D}_{\mathrm{KL}}(1-p(1-\varepsilon), 1-p) \geqslant p \varepsilon^{2} / 2$.

Check them out at:
https://www.desmos.com/calculator/pyessio3v2

Appendix: Intuition for the Analysis

- Let \mathbb{X} be an r.v. over $[a, b]$ such that $\mathbb{E}[\mathbb{X}]=\mu$
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a concave upwards function (that is, it looks like $f(x)=x^{2}$)
- Jensen's inequality states that $f(\mathbb{E}[\mathbb{X}]) \leqslant \mathbb{E}[f(\mathbb{X})]$, and equality holds if and only if \mathbb{X} has its entire probability mass at μ. Therefore, we can conclude that $f(\mu) \leqslant \mathbb{E}[f(\mathbb{X})]$
- So, we have a lower-bound on $\mathbb{E}[f(\mathbb{X})]$. Now, we are interested in obtaining an upper-bound on $\mathbb{E}[f(\mathbb{X})]$
- For the upper-bound note that is \mathbb{X} deposits more probability mass away from μ, then $\mathbb{E}[f(\mathbb{X})]$ increases. In fact, increasing the mass further away increases $\mathbb{E}[f(\mathbb{X})]$ more. So, the maximum value of $\mathbb{E}[f(\mathbb{X})]$ is achieved when \mathbb{X} deposits the entire probability mass either at a or b only. Let us find such a probability distribution under the constraint that $\mathbb{E}[\mathbb{X}]=\mu$
- Suppose $\mathbb{P}\left[\mathbb{X}^{*}=a\right]=p$. Then, we have $\mathbb{P}\left[\mathbb{X}^{*}=b\right]=1-p$. Further, the constraint $\mathbb{E}\left[\mathbb{X}^{*}\right]=\mu$ becomes $p a+(1-p) b=\mu$. Solving, we get

$$
p=\frac{b-\mu}{b-a}
$$

Therefore, we get $1-p=\frac{\mu-a}{b-a}$. For this probability, we get

$$
\mathbb{E}\left[f\left(\mathbb{X}^{*}\right)\right]=\frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
$$

So, we expect the following bound to hold for a general r.v. \mathbb{X}

$$
\mathbb{E}[f(\mathbb{X})] \leqslant \mathbb{E}\left[f\left(\mathbb{X}^{*}\right)\right]=\frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
$$

This is not a formal proof. Let us prove this intuition formally.

- Let \mathbb{X} be an r.v. over $[a, b]$ with $\mathbb{E}[\mathbb{X}]=\mu$. Note that by Jensen's inequality, we have

$$
f(x)=f\left(\frac{b-x}{b-a} a+\frac{x-a}{b-a} b\right) \leqslant \frac{b-x}{b-a} f(a)+\frac{x-a}{b-a} f(b)
$$

Now, we take expectation on both sides to conclude that

$$
\begin{aligned}
\mathbb{E}[f(\mathbb{X})] & \leqslant \mathbb{E}\left[\frac{b-\mathbb{X}}{b-a} f(a)+\frac{\mathbb{X}-a}{b-a} f(b)\right] \\
& =\frac{b-\mathbb{E}[\mathbb{X}]}{b-a} f(a)+\frac{\mathbb{E}[\mathbb{X}]-a}{b-a} f(b) \\
& =\frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
\end{aligned}
$$

- To conclude, we have the following bound.

$$
f(\mu) \leqslant \mathbb{E}[f(\mathbb{X})] \leqslant \frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
$$

