
Lecture 01: Mathematical Inequalities
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Overview I

In today’s lecture, we shall cover some techniques to prove
fundamental mathematical inequalities. We shall rely on the
Lagrange form of Taylor’s Remainder Theorem to prove these
results. We emphasize that we shall not prove the theorem itself.
The course website provides an additional resource that presents
proof of this result. Interested students are encouraged to go over
that proof.
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Overview II

We shall use this theorem to prove the following mathematical
inequalities.

1 Jensen’s Inequality,
1 AM-GM-HM Inequality
2 Cauchy-Schwarz Inequality
3 Young’s Inequality
4 Hölder’s Inequality

2 Approximating exp(−x) and ln(1 − x) using polynomials, and
3 (In the future, we shall cover) Bonami-Beckner-Gross

Hypercontractivity Inequality
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Lagrange Form of the Taylor’s Remainder Theorem I

Let us begin by recalling Taylor’s Theorem

Theorem (Taylor’s Theorem)

f (a+ ε) = f (a) + f (1)(a)
ε

1!
+ f (2)(a)

ε2

2!
+· · ·

For example
1 Using f (x) = exp(−x) and a = 0, we get

exp(−ε) = 1 − ε

1!
+

ε2

2!
− ε3

3!
+· · ·

2 Using f (x) = ln(1 − x) and a = 0, we get

ln(1 − ε) = −ε

1
− ε2

2
− ε3

3
−· · ·
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Lagrange Form of the Taylor’s Remainder Theorem II

Motovation. Suppose we truncate the infinite Taylor series at the
f (k) ε

k

k! term.
1 Is the truncated series an “overestimation” or an

“underestimation”?
2 How good is the quality of approximation?

The Lagrange form of Taylor’s Remainder Theorem will help answer
this question.
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Lagrange Form of the Taylor’s Remainder Theorem III

Theorem (Lagrange Form of the Taylor Remainder Theorem)

For every a and ε, there exists θ ∈ (0, 1) such that

f (a+ ε) =

(
f (a) + f (1)(a)

ε

1!
+ f (2)(a)

ε2

2!
+· · ·+ f (k)(a)

εk

k!

)

+ f (k+1)(a+ θε)
εk+1

(k + 1)!

We refer to the term R = f (k+1)(a+ θε) εk+1

(k+1)! as the remainder.

If the remainder is positive, then the truncation is an
underestimation. If the remainder is negative, then the
truncation is an overestimation.

The absolute value of the remainder determines the quality of
the approximation.
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Example Problems I

Problem 1. Let f (x) = exp(−x) and a = 0. For k ⩾ 0, define
pk(ε) =

∑k
i=0

(−ε)i

i! .
For example, we have p0(ε) = 1, p1(ε) = 1 − ε,
p2(ε) = 1 − ε+ ε2/2, and p3(ε) = 1 − ε+ ε2/2 − ε3/6, and so on.
For 0 ⩽ ε ⩽ 1, apply Taylor’s Remainder Theorem to deduce the
following.

1 If k is odd then we have exp(−ε) ⩾ pk(ε).
2 If k is even then we have exp(−ε) ⩽ pk(ε).
3 Prove that the absolute value of the remainder when we

estimate exp(−ε) by pk(ε) is at most εk+1/(k + 1)!.

Use the code at Desmos to experiment and develop intuition.
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Example Problems II

Problem 2. Let f (x) = ln(1 − x) and a = 0. For k ⩾ 0, define
pk(ε) =

∑k
i=1

−εi

i .
For example p0(ε) = 0, p1(ε) = −ε, p2(ε) = −ε− ε2/2,
p3(ε) = −ε− ε2/2 − ε3/3, and so on.
For 0 ⩽ ε ⩽ 1, apply Taylor’s Remainder Theorem to deduce the
following.

1 We have ln(1 − ε) ⩽ pk(ε), for all k ⩾ 0.
2 What is the magnitude of the remainder?
3 How will you get a lower bound of ln(1 − ε)?

Use the code at Desmos to experiment and develop intuition.

Mathematical Inequalities

https://www.desmos.com/calculator/uacanf365c


A High-level Intuitive Summary

We are using polynomials to estimate any function f

The “behavior of f ” at (a+ ε) is guided by the “properties of
f ” at the point a!
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Convex Functions

Definition (Convex Function)

A function f is convex in the range [a, b] if f (2) is positive in [a, b].

For example, the following functions are convex
1 f (x) = x2

2 f (x) = exp(x)

3 f (x) = exp(−x)

4 f (x) = 1/x , in (0,∞)

Think: How to define the convexity of functions of multiple
variables?
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Jensen’s Inequality I

Jensen’s Inequality, intuitively, states the following. Suppose f is a
convex function. The secant joining any two points on the curve of
f lies above the curve of f .

Theorem (Jensen’s Inequality)

For a convex f , we have

f (a) + f (b)

2
⩾ f

(
a+ b

2

)
Equality holds if and only if a = b.

In general, if X is a probability distribution over a sample space Ω
then

E
[
f (X)

]
⩾ f (E [X])
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Jensen’s Inequality II

We can use the Lagrange Form of Taylor’s remainder theorem
to prove Jensen’s inequality

A function f is concave if the function −f is convex. For
example, the function ln x , ln(1 − x) in the range [0, 1),

√
x in

the range [0,∞), and 1/x , in the range (−∞, 0) are concave
function.

Think: What is Jensen’s inequality for concave functions?
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Example

Suppose f (x) = x2. Note that f is convex.
So, we get the following inequality. For all a, b, we have

a2 + b2

2
⩾

(
a+ b

2

)2

Equality holds if and only if a = b.
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Example Problems I

Use Jensen’s Inequality to prove the following mathematical
inequalities.

1 AM-GM Inequality. For positive a, b, we have

a+ b

2
⩾

√
ab

Equality holds if and only if a = b.
Consider the function f (x) = ln x to prove this inequality.

2 Cauchy-Schwarz Inequality. For positive a1, a2, b1, b2, we
have

(a1b1 + a2b2) ⩽
(
a2
1 + a2

2

)1/2 (
b2
1 + b2

2

)1/2

Equality holds if and only if a1
b1

= a2
b2

.
Consider the function f (x) = ln

(
1 + exp(x)

)
.
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Example Problems II

3 Young’s Inequality. Let p, q ⩾ 1 satisfy 1
p + 1

q = 1. Such a
pair of p and q is referred to as Hölder conjugates. For
positive a, b, we have

ab ⩽
ap

p
+

bq

q

Equality holds if and only if ap = bq.
Consider the function f (x) = ln x .

4 Hölder’s Inequality. For Hölder conjugates p and q, the
following holds for positive a1, a2, b1, b2.

(a1b1 + a2b2) ⩽
(
ap1 + ap2

)1/p (
bq1 + bq2

)1/q
What is the equality characterization? What function f (x) will
you consider?
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Examples



Example 1: Bound exp using Polynomials I

Our objective is to bound exp(−x) using polynomials in x
when x is in the set [0, 1]. We shall use the Lagrange form of
Taylor’s Remainder Theorem to prove these bounds

First, let us recall what the Lagrange’s form of Taylor’s
Remainder Theorem states. Suppose f is a “well-behaved”
function. Let f (i) represent the i-th derivative of f (here f (0)

represents the function f itself). For any choice of a, k , ε,
there exists θ ∈ [0, 1] such that the following identity holds

f (a+ ε) =

Estimate︷ ︸︸ ︷ k∑
i=0

f (k)(a)
εk

k!

+

Remainder︷ ︸︸ ︷
f (k+1)(a+ θε)

εk+1

(k + 1)!

We emphasize that the value of θ depends on the values of
a, k, ε. The sign of the remainder determines whether the
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Example 1: Bound exp using Polynomials II

estimate is an overestimation or an underestimation of the
value f (ε).

As a corollary, when a = 0, the above statement yields the
following result. For any choice of k, ε, there exists θ ∈ [0, 1]
such that

f (ε) =

 k∑
i=0

f (k)(0)
εk

k!

+ f (k+1)(θε)
εk+1

(k + 1)!

We shall use f (x) = exp(−x)

Claim: f (i)(x) = (−1)i exp(−x) (you can use induction to
prove this claim)

So, we have f (i)(0) = (−1)i
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Example 1: Bound exp using Polynomials III

Case k = 1. Let us apply the Lagrange form of Taylor’s
Remainder theorem to f (x) = exp(−x), and for the choice of
a = 0 and k = 1. So, for every ε there exists θ ∈ [0, 1] such
that

f (ε) = f (0) + f (1)(0)
ε

1!
+ f (2)(θε)

ε2

2!

This expression is equivalent to

exp(−ε) = 1 − ε+

Remainder︷ ︸︸ ︷
exp(−θε)

ε2

2!

Note that the remainder is positive. So, we have
exp(−ε) ⩾ 1 − ε.
We have our first underestimation of exp(−x) using
polynomials in x .
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Example 1: Bound exp using Polynomials IV

Case k = 2. Let us use k = 2 now. So, for every ε there
exists θ ∈ [0, 1] such that

f (ε) = f (0) + f (1)(0)
ε

1!
+ f (2)(ε)

ε2

2!
+ f (3)(θε)

ε3

3!

This expression is equivalent to

exp(−ε) = 1 − ε+ ε2/2 − exp(−θε)
ε3

3!

Note that the remainder is negative. So, we have
exp(−ε) ⩽ 1 − ε+ ε2/2
We have our first overestimation of exp(−x) using polynomials
in x .
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Example 1: Bound exp using Polynomials V

In general, if k is odd we get an underestimation

exp(−ε) ⩾ 1 − ε+ ε2/2 −· · · − εk/k!

If k is even, we get the overestimation

exp(−ε) ⩽ 1 − ε+ ε2/2 −· · ·+ εk/k!
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Example 2: AM-GM Inequality I

Our objective is to prove the AM-GM inequality using Jensen’s
Inequality

Let us recall the AM-GM inequality. In the simplest form, it
states that for any a, b ⩾ 0, we have

a+ b

2
⩾

√
ab,

and equality holds if and only if a = b. Note that this
statement already implies that the inequality if “strict” if a ̸= b.
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Example 2: AM-GM Inequality II

In general, let a1, . . . an ⩾ 0 be n real numbers. Let p1, . . . , pn
define a probability distribution (this implies that pi ⩾ 0 and∑n

i=1 pi = 1). The general AM-GM inequality states that

n∑
i=1

piai ⩾
n∏

i=1

apii

Furthermore, equality holds if and only if a1 = a2 = · · · = an.
Note that the simplest form of the AM-GM inequality is the
restriction of this statement to n = 2 and p1 = p2 = 1/2.
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Example 2: AM-GM Inequality III

Let us try to “play around” with the AM-GM inequality to find
the appropriate function f on which we shall apply Jensen’s
inequality. We need to prove

n∑
i=1

piai ⩾
n∏

i=1

apii

Note that we can write ai as exp(ln(ai )). So, the AM-GM
inequality is equivalent to proving

n∑
i=1

piai ⩾
n∏

i=1

apii =
n∏

i=1

exp(ln(ai ))
pi =

n∏
i=1

exp(pi ln(ai )) = exp

 n∑
i=1

pi ln(ai )
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Example 2: AM-GM Inequality IV
Since ln is monotone, we can take ln on both sides and it is
equivalent to proving

ln

 n∑
i=1

piai

 ⩾
n∑

i=1

pi ln(ai )

Look, now the inequality that we need to prove involves
expressions of the form

f

 n∑
i=1

piai

 and
n∑

i=1

pi f (ai )

So, we apply Jensen’s Inequality to the function f (x) = ln(x)
(which is convex downwards) and obtain the inequality.
Equality holds if and only if all points coincide, that is,
a1 = a2 = · · · = an.
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Example 3: Cauchy–Schwarz Inequality I

Suppose we have a1, . . . , an, b1, . . . , bn ̸= 0. Cauchy–Schwarz
inequality states that∣∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣∣ ⩽
 n∑

i=1

a2
i

1/2 n∑
i=1

b2
i

1/2

And, inequality holds if and only if a1
b1

= a2
b2

= · · · = an
bn

.

As in the previous example, we shall manipulate the
Cauchy–Schwarz inequality into an equivalent inequality that
we can prove using Jensen’s inequality. However, this
manipulation is tricky in this case. The first hint regarding
what points we should be using is given by the equality
condition, which states that ai

bi
is constant. So, we should try

to rewrite the Cauchy–Schwarz inequality so that the
expression ai

bi
shows up.
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Example 3: Cauchy–Schwarz Inequality II

The Cauchy–Schwarz inequality is equivalent to∣∣∣∣∣∣
n∑

i=1

b2
i ·
(
ai
bi

)∣∣∣∣∣∣ ⩽
 n∑

i=1

b2
i ·
(
ai
bi

)2
1/2 n∑

i=1

b2
i

1/2

Note that the left-hand side has the points as ai
bi

. However,
there is a slight problem. The corresponding coefficients b2

i do
not define a probability (although the values are positive, they
might not add up to 1). So, we divide both sides of the
expression by B =

∑n
j=1 b

2
j . This manipulation yields the

following equivalent expression∣∣∣∣∣∣
n∑

i=1

b2
i

B
·
(
ai
bi

)∣∣∣∣∣∣ ⩽ 1
B

 n∑
i=1

b2
i ·

(
ai
bi

)2
1/2

√
B =

 n∑
i=1

b2
i

B
·
(
ai
bi

)2
1/2
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Example 3: Cauchy–Schwarz Inequality III

Let us define pi = b2
i /B and xi = ai/bi . This substitution

makes the Cauchy–Schwarz inequality equivalent to∣∣∣∣∣∣
n∑

i=1

pixi

∣∣∣∣∣∣ ⩽
 n∑

i=1

pix
2
i

1/2

Both sides of the inequality are positive, so we can square both
sides and get an equivalent inequality n∑

i=1

pixi

2

⩽
n∑

i=1

pix
2
i
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Example 3: Cauchy–Schwarz Inequality IV

If we prove the above inequality, then we have proven
Cauchy–Schwarz inequality. We shall use f (x) = x2 (convex
upwards function) and apply Jensen’s inequality to prove this
inequality. Furthermore, equality holds if and only if all points
xi = ai/bi are identical.

Exercise: Prove the Hölder’s inequality that states the
following. Let a1, . . . , an, b1, . . . , bn > 0. Let p, q be positive
reals such that 1

p + 1
q = 1.

n∑
i=1

aibi ⩽

 n∑
i=1

api

1/p n∑
i=1

bqi

1/q

Equality holds if and only if api /b
q
i is identical for all

i ∈ {1, . . . , n}.
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