
Lecture 14: Azuma-Hoeffding Inequality Proof
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Recall: Azuma’s Inequality

Theorem (Azuma’s Inequality)

Let Ω be a sample space and p be a probability distribution over Ω.
Let {∅,Ω} = F0 ⊂ F1 ⊂· · · ⊂ Fn be a filtration. Let
(F0,F1, . . . ,Fn) be a martingale with respect to the filtration
above. Suppose, for all 1 6 i 6 n, there exists ci such that, for all
x ∈ Ω, we have

ci > max
y∈Fi−1(x)

Fi (y)− min
y∈Fi−1(x)

Fi (y)

Then, the following bound holds

P [Fn − F0 > E ] 6 exp

−2E 2/

n∑
i=1

c2
i


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Proof I

Let (∆F1,∆F2, . . . ,∆Fn) be the corresponding martingale
difference sequence. That is, we define ∆Fi = Fi − Fi−1, for
1 6 i 6 n. Since, this is a martingale difference sequence, we
have the following guarantee for all 1 6 i 6 n.

E
[
∆Fi |Fi−1

]
= 0

Note that the property of ci can be written as follows (by
subtracting Fi−1(x) from both the terms)

ci > max
y∈Fi−1(x)

∆Fi (y)− min
y∈Fi−1(x)

∆Fi (y)

Azuma’s inequality is equivalent to proving

P

 n∑
i=1

∆Fi > E

 6 exp

−2E 2/

n∑
i=1

c2
i


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Proof II

Similar to the technique of proving Chernoff bound, we
conclude that, for all h > 0, the following is true

P

 n∑
i=1

∆Fi > E

 6
E
[
exp

(
h
∑n

i=1 ∆Fi

)]
exp(hE )

Our effort now is to upper-bound the expected value

E

exp

h
n∑

i=1

∆Fi



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Proof III

Consider the following set of manipulations

E

exp

h
n∑

i=1

∆Fi




=E

E
exp

h
n∑

i=1

∆Fi


∣∣∣∣∣∣∣Fn−1




=E

exp

h
n−1∑
i=1

∆Fi

E
[

exp (h∆Fn)
∣∣Fn−1

]
The last equality is because exp

(
h
∑n−1

i=1 ∆Fi

)
is Fn−1

measurable.
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Proof IV

We can apply Hoeffding’s Lemma to upper bound
E
[

exp (h∆Fn)
∣∣Fn−1

]
as follows

E
[

exp (h∆Fn)
∣∣Fn−1

]
6 exp

(
h2

8
c2
n

)

So, we obtain that

E

exp

h
n∑

i=1

∆Fi


 6 exp

(
h2

8
c2
n

)
E

exp

h
n−1∑
i=1

∆Fi




Repeatedly applying the bound to the last ∆Fi , we get

E

exp

h
n∑

i=1

∆Fi


 6 exp

h2

8

n∑
i=1

c2
i


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Proof V

So, we get that

P

 n∑
i=1

∆Fi > E

 6 exp

h2

8

n∑
i=1

c2
i − hE


Rest of the proof is identical to the proof of the Hoeffding’s
Bound. The optimal choice of h that minimizes the RHS is

h∗ = 4E/
n∑

i=1

c2
i

Substituting this value of h, we obtain

P

 n∑
i=1

∆Fi > E

 6 exp

−2E 2/

n∑
i=1

c2
i


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Concluding Note

Students are highly recommended to use a representative
example (as worked out in the class) to verify all the
“equalities” and the “inequalities” used in the derivation of the
proof
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Objective of the rest of the lecture

The objective is to summarize all the concentration inequalities
that we have studied in this course
We shall also highlight some subtleties that differentiate the
use of one concentration inequality from the others
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Markov Inequality

Let X be a random variable such that X > 0 (i.e., the random
variable is non-negative)
Then the only bound that we can claim is the following for any
t > 0

P [X > t] 6
E [X]

t

For example, this bound implies that if t = αE [X], then
P [X > t] 6 1/α. That is, it is unlikely that the the
expectation of a random variable exceeds the expected value
significantly
Comment: For every t, there exists a random variable X such
that the Markov inequality is tight. We emphasize that there
is no single X that witnesses the tightness of the Markov
inequality for all t
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Chernoff Bound I

Let Xi , for 1 6 i 6 n, be independent random variables. Each
Xi is a random variable over the sample space [0, 1].

Comment: Note that the Xi s need not be identical. We can
use “linear offset + linear scaling” to apply the Chernoff bound
whenever there exists a, b such that a 6 Xi 6 b, for all
1 6 i 6 n

Let p = (E [X1] +· · ·+ E [Xn])/n

Let Sn := X1 +· · ·+ Xn

Note that E [Sn] = np. Our objective is to prove that the
probability that Sn significantly exceeds its expected value is
very small. Chernoff bound states the following.

P [Sn > np + E ] 6 exp
(
−nDKL

(
p + E/n, p

))
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Chernoff Bound II

Comment: The Chernoff bound is true for all p and n. For
example, the value of p can depend on n itself. Consider
p = 1/

√
n. The bound continues to hold

We can apply the Chernoff bound to the sum of 1− Xi

random variables to conclude that

P [Sn 6 np − E ] 6 exp
(
−nDKL

(
(1− p) + E/n, 1− p

))
This form of the inequality, although very precise (tight
lower-bound can be derived using the Stirling’s Approximation
and was part of your homework problems), is not easy to
evaluate. This form is also unwieldy to understand the
asymptotics based on n. So, we prove simpler to evaluate
forms of this inequality
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Chernoff Bound III

Simpler Form 1.

P [Sn > np + E ] 6 exp
(
−nDKL

(
p + E/n, p

))
6 exp(−2E 2/n)

This bound is very easy to evaluate and highlights that most
of the probability mass is concentrated around E ≈

√
n radius

of concentration around the mean.

Comment: Note that this bound is oblivious to the value of
p. So, we can bound the lower tail as follows. Let q = 1− p.

P [Sn 6 np − E ] 6 exp
(
−nDKL

(
q + E/n, q

))
6 exp(−2E 2/n)
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Chernoff Bound IV

Comment: The property that the bound is independent of p
is a significant drawback when we want to use Chernoff bound
for problems where p is very small. For example, consider the
case of p = 1/

√
n. In this case, the expected value

E [Sn] =
√
n, so a radius of concentration E ≈

√
n is not very

meaningful. So, we go for easier to evaluate multiplicative
forms of Chernoff bounds.

Comment: Easier to evaluate Form 1 of the Chernoff bound
is a corollary of the Hoeffding’s bound (which, in turn, is a
corollary of the independent bounded difference inequality;
which, in turn, is a corollary of the Azuma’s inequality)
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Chernoff Bound V

Simpler Form 2. Let ε > 0 and µ = E [Sn] = np. Let
p′ = p(1 + ε). We have

P
[
Sn > µ(1 + ε)

]
6 exp

(
−nDKL

(
p′, p

))
6 exp

(
− ε2µ

2(1 + ε
3)

)

This bound proves that the radius of concentration is roughly
E ≈ √µ.
Simpler Form 3. Let 1 > ε > 0 and µ = E [Sn] = np. Let
q = 1− p and q′ = 1− p(1− ε). We have

P
[
Sn 6 µ(1− ε)

]
6 exp

(
−nDKL

(
q′, q

))
6 exp

(
−ε

2µ

2

)

This bound proves that the radius of concentration is roughly
E ≈ √µ.
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Hoeffding’s Bound

Let ai 6 Xi 6 bi be independent random variables for
1 6 i 6 n. Define ci = bi − ai , for 1 6 i 6 n

Let Sn := X1 +· · ·+ Xn

Then, the following bound holds

P
[
Sn > E [Sn] + E

]
6 exp

−2E 2/

n∑
i=1

c2
i


Comment: This bound is a consequence of the Bounded
Independent Difference inequality
Comment: The simpler to evaluate form 1 of Chernoff bound
is a corollary of this bound
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Independent Bounded Difference Inequality I

Let X1, . . . ,Xn be independent random variables over the
sample spaces Ω1, . . . ,Ωn, respectively

Define Ω := Ω1 ×· · · × Ωn

Let f : Ω→ R be any function that is (c1, . . . , cn)-bounded

Let µ = E
[
f (X1, . . . ,Xn)

]
Then, the following bound holds

P
[
f (X1, . . . ,Xn) > µ+ E

]
6 exp

−2E 2/

n∑
i=1

c2
i


Comment: This bound is a consequence of the
Azuma-Hoeffding inequality

Comment: This bound yields Hoeffding’s bound as a corollary

Azuma’s Inequality



Independent Bounded Difference Inequality II

Comment: The radius of concentration is E ≈
√∑n

i=1 c
2
i .

Note that the “number of variables” also factors into this
bound.

Comment: We emphasize that the same “quantity” can be
represented in multiple ways as functions of different random
variables. For example, the chromatic number of a graph
whose edges are uniformly and independently included in the
graph with probability p. If we define a random variable for

each edge, then there are

(
n
2

)
≈ n2/2 random variables. The

chromatic number is a (1, . . . , 1)-bounded function.

Consequently, the radius of concentration is

√√√√(n
2

)
≈ n,

which is not meaningful (because µ = Θ(n), for constant p).
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Independent Bounded Difference Inequality III

However, if we consider the graph where Xi represents how the
vertex i is connected to the graph induced by {1, . . . , i − 1},
then there are n random variables. The chromatic number is a
(0, 1, . . . , 1)-bounded function. So, we get a

√
n radius of

concentration, which is meaningful.

Comment: There are several applications of this bound. For
example, to the chromatic number of random graphs, rank of
random matrices

Comment: The max-load function is also (1, . . . , 1)-bounded.
However, the radius of concentration is much-much larger than
the expected value.
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Azuma-Hoeffding Inequality I

Let Ω be a sample space

Consider the filtration

{∅,Ω} = F0 ⊂ F1 ⊂· · · ⊂ Fn

Let (F0,F1, . . . ,Fn) be a martingale sequence with respect to
the filtration mentioned above

For 1 6 i 6 n, there exists ci such that for all x ∈ Ω

ci > max
y∈Fi−1(x)

Fi (y)− min
y∈Fi−1(x)

Fi (y)

Then, the following bound holds

P [Fn > F0 + E ] 6 exp

−2E 2/

n∑
i=1

c2
i


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Azuma-Hoeffding Inequality II

Comment: Let X1 ∈ Ω1, . . . ,Xn ∈ Ωn. Define
Ω := Ω1 ×· · · × Ωn. Let f : Ω→ R be any function. We
emphasize that the distributions X1, . . . ,Xn need not be
independent. Suppose we are interested in studying the
concentration of the function f around its expected value
µ = E

[
f (X1, . . . ,Xn)

]
. That is, bound the quantity

P
[
f (X1, . . . ,Xn) > µ+ E

]
6?

1 We consider the filtration that reveals one coordinate of the
functions at a time.

Azuma’s Inequality



Azuma-Hoeffding Inequality III

2 We consider the Doob’s Martingale with respect to this
filtration using the following random variables. For any
0 6 i 6 n we define

Fi (x) := E
[
f (X1, . . . ,Xn)|Fi

]
(x)

Note that F0(x) = E
[
f (X1, . . . ,Xn)

]
= µ.

3 Now, we need to compute ci , for 1 6 i 6 n, such that

ci > max
y∈Fi−1(x)

Fi (y)− min
y∈Fi−1(x)

Fi (y)

We emphasize that maxy∈Fi−1(x) Fi (y) can be different from
miny∈Fi−1(x) Fi (y) for different x ∈ Ω. However, as long as
their difference is bounded by ci for every x ∈ Ω, we are all set!

4 Now, Azuma-Hoeffding inequality shall imply that

P [Fn > µ+ E ] 6 exp

−2E 2/

n∑
i=1

c2
i


Azuma’s Inequality



Azuma-Hoeffding Inequality IV

Comment: We can obtain concentration bounds for
(c1, . . . , cn)-bounded functions where each coordinate is
uniformly and independently chosen.

Comment: We can obtain the concentration of the
Hypergeometric series and in the Pólya’s urn experiment
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Talagrand Inequality I

Let X = (X1, . . . ,Xn) be independent random variables such
that X1 ∈ Ω1, . . . ,Xn ∈ Ωn.

Define the product space Ω := Ω1 ×· · · × Ωn

Let A ⊆ Ω be any subset

Talagrand’s inequality states the following

P [X ∈ A] · P
[
dT (X,A) > t

]
6 exp(−t2/4)

Here dT (·, ·) represents the convex distance.
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Talagrand Inequality II

Comment: Let us introduce the definition of an
c-configuration function f : Ω→ R. The function f is
c-configuration, if for every x ∈ Ω, there exists αx such that
‖αx‖2 = 1 and for every y ∈ Ω we have

f (y) > f (x)−
√
cf (x)dαx (x , y)

Let m represent the median of the distribution f (X). Then,
the following bounds are corollary of the Talagrand’s inequality.

P
[
f (X) > m + t

]
6 exp(−t2/4c(m + t))

P
[
f (X) 6 m − t

]
6 exp(−t2/4cm)
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Talagrand Inequality III

Comment: Remember that m 6 2E
[
f (X)

]
by Markov

inequality. This bound for c-configuration functions yields a
concentration radius of

√
m ≈ √µ, which is applicable even

when m is much less than n. However, note that we need
X1, . . . ,Xn to be independent of each other. So, Talagrand
and Azuma-Hoeffding inequalities are incomparable to each
other (that is, they do not subsume each other).

Comment: In the class we saw an application to the longest
increased subsequence of n random numbers in [0, 1). The
mean/median of this random variable is Θ(

√
n). Talagrand’s

inequality yields a concentration of
√
m around the median.
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