
Lecture 04: Concentration Bounds: Markov and
Chebyshev Inequality
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Definition: Expectation and Variance I

Let X be a random variable over the sample space Ω ⊆ R
The “average value of X” (referred to as the mean) is defined
as follows for a discrete sample space Ω

E [X] :=
∑
ω∈Ω

ω · P [X = ω] .

Think: How to generalize this definition to continuous Ω, say
Ω = R
This definition of the mean coincides with the notion of the
“center of gravity” of the probability mass function of the
random variable X.
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Definition: Expectation and Variance II

An essential property of the mean is the following

Theorem (Linearity of Expectation)

For two random variables X,Y over the sample space Ω ⊆ R, the
following identity holds

E [X + Y] = E [X] + E [Y] .

This identity holds irrespective of whether X and Y are
independent of each other or not!

For example, let Bernoulli distribution Ber(p) over the sample
space {0, 1} represent the distribution where
P
[
Ber(p) = 1

]
= p and P

[
Ber(p) = 0

]
= (1− p). Note that

E
[
Ber(p)

]
= p.
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Definition: Expectation and Variance III

Let (X1, . . . ,Xn) be a joint distribution such that each
marginal distribution Xi is identical to the distribution
Bern(p). Then, by the linearity of expectation, we have
E
[∑n

i=1 Xi

]
= np.

The variance of a distribution (intuitively) is a measure of how
tightly the distribution is distributed around its mean. It is
defined as follows

Var [X] := E
[
(X− µ)2

]
,

where µ = E [X].

Prove: Var [X] = E
[
X2]− µ2.
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Overview for Concentration Bounds

Previously, we learned about the expected value of a random
variable
However, is the expected value a good representation of the
random variable?
If the random variable concentrates most of its probability
mass around the expected value, then we consider the
expected value to be a good representation of the random
variable’s behavior
In the topics of concentration, we shall cover technique to
argue the “typicality of a randomized experiment,” i.e., say the
mean (or the median) being a good representative of a
probability distribution
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Markov Inequality I

Theorem (Markov Inequality)

Let X be a r.v. over the sample space Ω ⊆ R>0 (i.e., the set of
non-negative real numbers), and µ = E [X]. Then, the following
bound holds.

P [X > λµ] 6
1
λ

By substitution of variables, this bound is also equivalent to the
following expression.

P [X > λ] 6
µ

λ

Intuition: Suppose λ is large. Then, the probability that X deposits
probability mass further than λµ is unlikely. I present the proof only
for discrete Ω. The case of general Ω is similar.
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Markov Inequality II

Proof. If possible let, Markov inequality is false. That is, there
exists λ > 1 such that P [X > λµ] > 1/λ. Then, let us lower-bound
the expectation as follows.

µ = E [X] =
∑
i∈Ω

i · P [X = i ]

=
∑

i∈Ω: i<λµ

i · P [X = i ] +
∑

i∈Ω: i>λµ

i · P [X = i ]

>
∑

i∈Ω: i<λµ

0 · P [X = i ] +
∑

i∈Ω: i>λµ

(λµ) · P [X = i ]

= 0 · P [X < λµ] + (λµ) · P [X > λµ]

> (λµ) · 1
λ

= µ

So, we have obtained a contradiction that µ > µ.
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Comments on Markov I

We emphasize that for every µ and λ > 1, there is a
distribution for which the Markov inequality is tight. Let X be
a distribution such that P [X = 0] = 1− 1/λ and
P [X = λµ] = 1/λ.

If there exists B such that P [X > B] = 0, i.e., the sample
space of X is bounded above, then we can also apply Markov
inequality to the random variable (B − X)

Think: The pigeon-hole principle states that if m balls are
placed arbitrarily into n bins then there exists a bin with⌈
m/n

⌉
balls. How is Markov inequality equivalent to the

pigeon-hole principle?
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Comments on Markov II

Think: Consider the following problem. Suppose (R,C) is a
joint distribution over Ω = {1, . . . ,m} × {1, . . . , n}.
Intuitively, think of a matrix with m-rows and n-columns. The
r.v. associates probability to the cells. Suppose there is a Fun
event and the following bound holds.

P
[
(R,C) ∈ Fun

]
> ε

That is, if you sample a cell according to the joint distribution
(R,C) then the probability of the Fun event occurring is at
least ε. Consider the following expression.

P
[
(R,C) ∈ Fun|R = r

]
This expression represents the probability of the Fun event
happening if we restrict (condition) on the row
r ∈ {1, . . . ,m}. Prove the following statement.
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Comments on Markov III

“The probability of sampling r ∼ R such that it has

P
[
(R,C) ∈ Fun|R = r

]
> α

is at least ε/α.”
Russel Impagliazzo referes to this result as the pigeon-hole
principle. The proof of this result is similar to the proof of the
Markov inequality. It is an excellent exercise to think of
techniques to use this result for derandomization.
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Chebyshev’s Inequality I

Theorem (Chebychev’s Theorem)

For any random variable X over real numbers, the following bound
holds

P
[
|X− µ| > t

]
6

Var [X]

t2
,

where µ = E [X].

Proof Outline.

P
[
|X− µ| > t

]
= P

[
(X− µ)2 > t2

]
6

E
[
(X− µ)2]

t2

=
Var [X]

t2

Concentration Bounds



Chebyshev’s Inequality II

In the previous proof, we used the following fact.

P
[
|X− µ| > t

]
= P

[
(X− µ)2 > t2

]
In general, this is true for any monotonically increasing
function function f . That is, for any monotonically increasing
function f : R→ R, we have

P [X > t] = P
[
f (X) > f (t)

]
This trick is extremely crucial and shall be used in various
other problems.
Additionally, the random variable (X− µ)2 is non-negative.
Therefore, we could apply the Markov inequality to conclude
the following

P
[
(X− µ)2 > t2

]
6

E
[
(X− µ)2]

t2
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Chebyshev’s Inequality III

So, we saw that “Markov studied the r.v. X and got a bound
in 1/t” and “Chebyshev studied the r.v. X2 and got a bound in
1/t2.” Can we extrapolate this approach to use “higher powers
of X” (technically referred to as the moments) to obtain
bounds that are “higher polynomials in 1/t?”

Prove: For a random variable X over the sample space R>0
the following identity holds.

P [X 6 0] 6
Var [X](
E [X]

)2 .
Think: Find the random variable X over the sample space
[a, b] satisfying E [X] = µ ∈ [a, b] that maximizes Var[X].
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