1. **RSA Assumption (5+12+5).** Consider RSA encryption scheme with parameters $N = 35 = 5 \times 7$.

 (a) Find $\varphi(N)$ and \mathbb{Z}_N^*.

 (b) Use repeated squaring and complete the rows X, X^2, X^4 for all $X \in \mathbb{Z}_N^*$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

 Solution.

<table>
<thead>
<tr>
<th>X</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X^4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\bar{X}				
X^2				
X^4				
(c) Find the row X^5 and show that X^5 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^*.

Solution.
2. **Answer to the following questions (7+7+7+7):**

(a) Compute the three least significant (decimal) digits of $87341011^{324562002}$ by hand. **Solution.**

(b) Is the following RSA signature scheme valid? (Justify your answer)

\[(r||m) = 342454323, \sigma = 13245345356, N = 155, e = 664\]

Here, \(m\) denotes the message, and \(r\) denotes the randomness used to sign \(m\) and \(\sigma\) denotes the signature. Moreover, \((r||m)\) denotes the concatenation of \(r\) and \(m\). The signature algorithm \(Sign(m)\) returns \((r||m)^d\ mod \ N\) where \(d\) is the inverse of \(e\) modulo \(\varphi(N)\). The verification algorithm \(Ver(m, \sigma)\) returns \((r||m) == \sigma^e\ mod \ N\).

Solution.
(c) Remember that in RSA encryption and signature schemes, \(N = p \times q \) where \(p \) and \(q \) are two large primes. Show that in a RSA scheme (with public parameters \(N \) and \(e \)), if you know \(N \) and \(\varphi(N) \), then you can find the factorization of \(N \) i.e. you can find \(p \) and \(q \).

Solution.

(d) Consider an encryption scheme where \(Enc(m) := m^e \mod N \) where \(e \) is a positive integer relatively prime to \(\varphi(N) \) and \(Dec(c) := c^d \mod N \) where \(d \) is the inverse of \(e \) modulo \(\varphi(N) \). Show that in this encryption scheme, if you know the encryption of \(m_1 \) and the encryption of \(m_2 \), then you can find the encryption of \((m_1 \times m_2)^5 \).

Solution.
Collaborators: