Lecture 22: RSA Encryption
Recall: RSA Assumption

- We pick two primes uniformly and independently at random $p, q \leftarrow P_n$
- We define $N = p \cdot q$
- We shall work over the group (\mathbb{Z}_N^*, \times), where \mathbb{Z}_N^* is the set of all natural numbers $< N$ that are relatively prime to N, and \times is integer multiplication mod N
- We pick $y \leftarrow \mathbb{Z}_N^*$
- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_N^*, which is $(p - 1)(q - 1)$
- We pick any $e \in \mathbb{Z}_{\varphi(N)}^*$, that is, e is a natural number $< \varphi(N)$ and is relatively prime to $\varphi(N)$
- We give (n, N, e, y) to the adversary A as ask her to find the e-th root of y, i.e., find x such that $x^e = y$

RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve.
Recall: Properties

- The function $x^e : \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection for all e such that $\gcd(e, \varphi(N)) = 1$

- Given (n, N, e, y), where $y \leftarrow \mathbb{Z}_N^*$, it is difficult for any computationally bounded adversary to compute the e-th root of y, i.e., the element $y^{1/e}$

- But given d such that $e \cdot d = 1 \mod \varphi(N)$, it is easy to compute $y^{1/e}$, because $y^d = y^{1/e}$

Now, think how we can design a key-agreement scheme using these properties. Once the key-agreement protocol is ready, we can use a one-time pad to create an public-key encryption scheme.
First, Alice and Bob establish a key that is hidden from the adversary

Alice

Bob

\[p, q \leftarrow P_n \]

\[N = p \cdot q \]

\[r \leftarrow \mathbb{Z}^*_N \]

pk = (n, N, e) Pick any \(e \in \mathbb{Z}^*_{\varphi(N)} \)

\[y = r^e \]

\[y \]

\[\tilde{r} = y^d \]

Note that \(r = \tilde{r} \) and is hidden from an adversary based on the RSA assumption

RSA Encryption
Using this key, Alice sends the encryption of $m \in \mathbb{Z}_N^*$ using the one-time pad encryption scheme.

\[
\begin{align*}
\text{Alice} & : \quad c = m \cdot r \\
\text{Bob} & : \quad \tilde{m} = c \cdot \text{inv}(\tilde{r})
\end{align*}
\]

Since, we always have $r = \tilde{r}$, this encryption scheme always decrypts correctly. Note that $\text{inv}(\tilde{r})$ can be computed only by knowing $\varphi(N)$.

RSA Encryption
Alice

\[p, q \leftarrow \mathcal{P}_n \]

\[N = p \cdot q \]

Bob

\[r \leftarrow \mathbb{Z}_N^* \]

\[pk = (n, N, e) \]

Pick any \(e \in \mathbb{Z}_{\phi(N)}^* \)

\[y = r^e \]

\[c = m \cdot r \]

\[(y, c) \]

\[\tilde{r} = y^d \]

\[\tilde{m} = c \cdot \text{inv}(\tilde{r}) \]
We emphasize that this encryption scheme work only for $m \in \mathbb{Z}_N^*$. In particular, this works for all messages m that have a binary representation of length less than n-bits, because p and q are n-bit primes.

HOWEVER, THIS SCHEME IS INSECURE
Let us start with a simpler problem.

Suppose I pick an integer \(x \) and give \(y = x^3 \) to you. Can you efficiently find the \(x \)?

Running for for loop with \(i \in \{0, \ldots, y\} \) and testing whether \(i^3 = y \) or not is an inefficient solution.

However, binary search on the domain \(\{0, \ldots, y\} \) is an efficient algorithm.

Then why does the RSA assumption that says “computing the e-th root is difficult if \(\varphi(N) \) is unknown” hold? Answer: Because we are working over \(\mathbb{Z}_N^* \) and not \(\mathbb{Z} \). “Wrapping around” due to the modulus operation while cubing kills the binary search approach.

However, if \(x \) is such that \(x^e < N \) then the modulus operation does not take effect. So, if \(x < N^{1/e} \) then we can find the e-th root of \(y \)!
• Now, let us try to attack the “first attempt” algorithm

• Recall that we have \(c = m \cdot r \) and \(y = r^e \). So, we have \(c^e = m^e \cdot r^e \). Now, note that \(c^e \cdot \text{inv}(y) = m^e \cdot r^e \cdot y^{-1} = m^e \).

• So, the adversary can compute \(c^e \cdot \text{inv}(y) \) to obtain \(m^e \). If \(m < N^{1/e} \), then the adversary can use binary search to recover \(m \).

• There is another problem! If Alice is encrypting and sending multiple messages \(\{m_1, m_2, \ldots \} \), then the eavesdropper can recover \(\{m_1^e, m_2^e, \ldots \} \). So, she can find which of these \(\{m_1^e, m_2^e, \ldots \} \) are identical. In turn, she can find out the messages in \(\{m_1, m_2, \ldots \} \) that are identical (because \(x^e : \mathbb{Z}_N^\ast \rightarrow \mathbb{Z}_N^\ast \) is a bijection).

• How do we fix these attacks?
Our idea is to pad the message m with some randomness s. The new message $s \parallel m$, with high probability, satisfies $(s \parallel m)^e > N$ (that is, it wraps around).

How does it satisfy the second attack mentioned above (Think: Birthday bound)?

Let us write down the new encryption scheme for $m \in \{0, 1\}^{n/2}$

\[
\text{Enc}_{n,N,e}(m):
\]

1. Pick $r \leftarrow \mathbb{Z}_N^*$
2. Pick $s \leftarrow \{0, 1\}^{n/2}$
3. Compute $y = r^e$, and $c = (s \parallel m) \cdot r$
4. Return (y, c)
Note that masking with r is not helping at all! Let us call $s \| m$ as the payload. An adversary can obtain the “e-th power of the payload” by computing $c^e \cdot y^{-1}$

So, we can use the following optimized encryption algorithm instead

\[
\text{Enc}_{n,N,e}(m):
\]

1. Pick $s \leftarrow \{0, 1\}^{n/2}$
2. Return $c = (s \| m)^e$
Let us summarize all the algorithms that we need to implement RSA algorithm

1. Generating n-bit primes to sample p and q
2. Generating e such that e is relatively prime to $\varphi(N)$, where $N = pq$
3. Finding the trapdoor d such that $e \cdot d \equiv 1 \mod \varphi(N)$