Homework 2

1. Some properties of $\left(\mathbb{Z}_{p}^{*}, \times\right)$ (25 points). Recall that \mathbb{Z}_{p}^{*} is the set $\{1, \ldots, p-1\}$ and \times is integer multiplication $\bmod p$, where p is a prime. For example, if $p=5$, then 2×3 is 1 . In this problem we shall prove that $\left(\mathbb{Z}_{p}^{*}, \times\right)$ is a group, when p is any prime. The only part missing in the lecture was the proof that every $x \in \mathbb{Z}_{p}^{*}$ has an inverse. We will find the inverse of any element $x \in \mathbb{Z}_{p}^{*}$.
(a) (10 points) Recall $\binom{p}{k}:=\frac{p!}{k!(p-k)!}$. For a prime p, prove that p divides $\binom{p}{k}$, if $k \in\{1,2, \ldots, p-1\}$.
Solution.
(b) (10 points) Recall that $(1+x)^{p}=\sum_{k=0}^{p}\binom{p}{k} x^{k}$. Prove by induction on x that, for any $x \in \mathbb{Z}_{p}^{*}$, we have

$$
\overbrace{x \times x \times \cdots \times x}^{p \text {-times }}=x
$$

Solution.

(c) (5 points) For $x \in \mathbb{Z}_{p}^{*}$, prove that the inverse of $x \in \mathbb{Z}_{p}^{*}$ is given by

$$
\overbrace{x \times x \times \cdots \times x}^{(p-2) \text {-times }}
$$

That is, prove that $x^{p-1}=1 \bmod p$, for any prime p and $x \in \mathbb{Z}_{p}^{*}$. Solution.
2. Understanding Groups: Part One (30 points). Recall that when we defined a group (G, \circ), we stated that there exists an element e such that for all $x \in G$ we have $x \circ e=x$. Note that e is "applied on x from the right."
Similarly, for every $x \in G$, we are guaranteed that there exists $\operatorname{inv}(x) \in G$ such that $x \circ \operatorname{inv}(x)=e$. Note that $\operatorname{inv}(x)$ is again "applied to x from the right."
In this problem, however, we shall explore the following questions: (a) Is there an "identity from the left?," and (b) Is there an "inverse from the left?"
We shall formalize and prove these results in this question.
(a) (7 points) Prove that $e \circ x=x$, for all $x \in G$.

Solution.
(b) (8 points) Prove that if there exists an element $\alpha \in G$ such that for all $x \in G$ we have $\alpha \circ x=x$, then $\alpha=e$.
(Remark: Note that these two steps prove that the "left identity" is identical to the right identity e.)
Solution.
(c) (7 points) Prove that $\operatorname{inv}(x) \circ x=e$. Solution.
(d) (8 points) Prove that if there exists an element $\alpha \in G$ and $x \in G$ such that $\alpha \circ x=e$, then $\alpha=\operatorname{inv}(x)$.
(Remark: Note that these two steps prove that the "left inverse of x " is identical to the right inverse $\operatorname{inv}(x)$.)
Solution.
3. Understanding Groups: Part Two (15 points). In this part, we will prove a crucial property of inverses in groups - they are unique. And finally, using this property, we will prove a result that is crucial to the proof of security of one-time pad over the group (G, \circ).
(a) (7 points) Suppose $a, b \in G$. Let $\operatorname{inv}(a)$ and $\operatorname{inv}(b)$ be the inverses of a and b, respectively (i.e., $a \circ \operatorname{inv}(a)=e$ and $b \circ \operatorname{inv}(b)=e)$. Prove that $\operatorname{inv}(a)=\operatorname{inv}(b)$ if and only if $a=b$.

Solution.

(b) (8 points) Suppose $m \in G$ is a message and $c \in G$ is a cipher text. Prove that there exists a unique sk $\in G$ such that $m \circ \mathrm{sk}=c$.
Solution.
4. Calculating Large Powers mod p ($\mathbf{1 5}$ points). Recall that we learned the repeated squaring algorithm in class.
Calculate the following using this concept

$$
19^{2020} \quad(\bmod 101)
$$

(Remark: 101 is a prime number).

Solution.

5. Practice with Fields (20 points). We shall work over the field $\left(\mathbb{Z}_{5},+, \times\right)$.
(a) (5 points) Addition Table. The (i, j)-th entry in the table is $i+j$. Complete this table. You do not need to fill the black cells because the addition is commutative.

Table 1: Addition Table.
(b) (5 points) Multiplication Table. The (i, j)-th entry in the table is $i \times j$. Complete this table.

Table 2: Multiplication Table.
(c) (5 points) Additive and Multiplicative Inverses. Write the additive and multiplicative inverses in the table below.

	0	1	2	3	4
Additive Inverse					
Multiplicative Inverse					

Table 3: Additive and Multiplicative Inverses Table.
(d) (5 points) Division Table. The (i, j)-th entry in the table is i / j. Complete this table.

	1	2	3	4
0				
1				
2				
3				
4				

Table 4: Division Table.
6. Order of an Element in $\left(\mathbb{Z}_{p}^{*}, \times\right)$. (20 points) The order of an element x in the multiplicative group $\left(\mathbb{Z}_{p}^{*}, \times\right)$ is the smallest positive integer h such that $x^{h}=1$ $\bmod p$. For example, the order of 2 in $\left(\mathbb{Z}_{5}^{*}, \times\right)$ is 4 , and the order of 4 in $\left(\mathbb{Z}_{5}^{*}, \times\right)$ is 2 .
(a) (5 points) What is the order of 4 in $\left(\mathbb{Z}_{11}^{*}, \times\right)$?

Solution.
(b) (10 points) Let x be an element in $\left(\mathbb{Z}_{p}^{*}, \times\right)$ such that $x^{n}=1 \bmod p$ for some positive integer n and let h be the order of x in $\left(\mathbb{Z}_{p}^{*}, \times\right)$. Prove that h divides n. Solution.
(c) (5 points) Let h be the order of x in $\left(\mathbb{Z}_{p}^{*}, \times\right)$. Prove that h divides $(p-1)$. Solution.
7. Defining Multiplication over \mathbb{Z}_{27}^{*} (25 points). In the class, we had considered the group $\left(\mathbb{Z}_{26},+\right)$ to construct a one-time pad for one alphabet messages. A few students were interested in defining a group with 26 elements using a "multiplication"like operation. This problem shall assist you to define the $\left(\mathbb{Z}_{27}^{*}, \times\right)$ group that has 26 elements.

The first attempt from class. Recall that in the class we had seen that the following is also a group.

$$
\left(\mathbb{Z}_{27} \backslash\{0,3,6,9,12,15,18,21,24\}, \times\right)
$$

where \times is integer multiplication $\bmod 27$. However, the set had only 18 elements.
In this problem, we shall define $\left(\mathbb{Z}_{27}^{*}, \times\right)$ in an alternate manner such that the set has 26 elements.

A new approach. Interpret \mathbb{Z}_{27}^{*} as the set of all triplets $\left(a_{0}, a_{1}, a_{2}\right)$ such that $a_{0}, a_{1}, a_{2} \in \mathbb{Z}_{3}$ and at least one of them is non-zero. Intuitively, you can think of the triplets as the ternary representation of the elements in \mathbb{Z}_{27}^{*}. We interpret the triplet $\left(a_{0}, a_{1}, a_{2}\right)$ as the polynomial $a_{0}+a_{1} X+a_{2} X^{2}$. So, every element in \mathbb{Z}_{27}^{*} has an associated non-zero polynomial of degree at most 2 , and every non-zero polynomial of degree at most 2 has an element in \mathbb{Z}_{27}^{*} associated with it.
The multiplication (\times operator) of the element $\left(a_{0}, a_{1}, a_{2}\right)$ with the element $\left(b_{0}, b_{1}, b_{2}\right)$ is defined as the element corresponding to the polynomial

$$
\left(a_{0}+a_{1} X+a_{2} X^{2}\right) \times\left(b_{0}+b_{1} X+b_{2} X^{2}\right) \quad \bmod 2+2 X+X^{3}
$$

The multiplication (\times operator) of the element $\left(a_{0}, a_{1}, a_{2}\right)$ with the element $\left(b_{0}, b_{1}, b_{2}\right)$ is defined as follows.
Input $\left(a_{0}, a_{1}, a_{2}\right)$ and $\left(b_{0}, b_{1}, b_{2}\right)$.
(a) Define $A(X):=a_{0}+a_{1} X+a_{2} X^{2}$ and $B(X):=b_{0}+b_{1} X+b_{2} X^{2}$
(b) Compute $C(X):=A(X) \times B(X)$ (interpret this step as "multiplication of polynomials with integer coefficients")
(c) Compute $R(X):=C(X) \bmod 2+2 X+X^{3}$ (interpret this as step as taking a remainder where one treats both polynomials as polynomials with integer coefficients). Let $R(X)=r_{0}+r_{1} X+r_{2} X^{2}$
(d) Return $\left(c_{0}, c_{1}, c_{2}\right)=\left(r_{0} \bmod 3, r_{1} \bmod 3, r_{2} \bmod 3\right)$

For example, the multiplication $(0,1,1) \times(1,1,2)$ is computed in the following way.
(a) $A(X)=X+X^{2}$ and $B(X)=1+X+2 X^{2}$.
(b) $C(X)=X+2 X^{2}+3 X^{3}+2 X^{4}$.
(c) $R(X)=-6-9 X-2 X^{2}$.
(d) $\left(c_{0}, c_{1}, c_{2}\right)=(0,0,1)$.

According to this definition of the \times operator, solve the following problems.

- (5 points $)$ Evaluate $(1,0,1) \times(1,0,1)$ Solution.
- (10 points) Note that $e=(1,0,0)$ is a identity element. Find the inverse of $(1,0,1)$.
Solution.
- (10 points) Assume that $\left(\mathbb{Z}_{27}^{*}, \times\right)$ is a group. Find the order of the element $(1,1,0)$.
(Recall that, in a group (G, \circ), the order of an element $x \in G$ is the smallest positive integer h such that $\overbrace{x \circ x \circ \cdots \circ x}^{h \text {-times }}=e$)
Solution.

Collaborators :

