Homework 2

- 1. Some properties of (\mathbb{Z}_p^*, \times) (25 points). Recall that \mathbb{Z}_p^* is the set $\{1, \ldots, p-1\}$ and \times is integer multiplication mod p, where p is a prime. For example, if p = 5, then 2×3 is 1. In this problem we shall prove that (\mathbb{Z}_p^*, \times) is a group, when p is any prime. The only part missing in the lecture was the proof that every $x \in \mathbb{Z}_p^*$ has an inverse. We will find the inverse of any element $x \in \mathbb{Z}_p^*$.
 - (a) (10 points) Recall $\binom{p}{k} := \frac{p!}{k!(p-k)!}$. For a prime p, prove that p divides $\binom{p}{k}$, if $k \in \{1, 2, \dots, p-1\}$. Solution.

(b) (10 points) Recall that $(1+x)^p = \sum_{k=0}^p {p \choose k} x^k$. Prove by induction on x that, for any $x \in \mathbb{Z}_p^*$, we have

$$\overbrace{x \times x \times \cdots \times x}^{p-\text{times}} = x$$

Solution.

(c) (5 points) For $x \in \mathbb{Z}_p^*$, prove that the inverse of $x \in \mathbb{Z}_p^*$ is given by

$$\overbrace{x \times x \times \cdots \times x}^{(p-2)\text{-times}}$$

That is, prove that $x^{p-1} = 1 \mod p$, for any prime p and $x \in \mathbb{Z}_p^*$. Solution. 2. Understanding Groups: Part One (30 points). Recall that when we defined a group (G, \circ) , we stated that there exists an element e such that for all $x \in G$ we have $x \circ e = x$. Note that e is "applied on x from the right."

Similarly, for every $x \in G$, we are guaranteed that there exists $inv(x) \in G$ such that $x \circ inv(x) = e$. Note that inv(x) is again "applied to x from the right."

In this problem, however, we shall explore the following questions: (a) Is there an "identity from the left?," and (b) Is there an "inverse from the left?"

We shall formalize and prove these results in this question.

(a) (7 points) Prove that $e \circ x = x$, for all $x \in G$. Solution. (b) (8 points) Prove that if there exists an element α ∈ G such that for all x ∈ G we have α ∘ x = x, then α = e.
(Remark: Note that these two steps prove that the "left identity" is identical to the right identity e.)
Solution.

(c) (7 points) Prove that $inv(x) \circ x = e$. Solution. (d) (8 points) Prove that if there exists an element $\alpha \in G$ and $x \in G$ such that $\alpha \circ x = e$, then $\alpha = inv(x)$. (Remark: Note that these two steps prove that the "left inverse of x" is identical to the right inverse inv(x).) Solution.

- 3. Understanding Groups: Part Two (15 points). In this part, we will prove a crucial property of inverses in groups they are unique. And finally, using this property, we will prove a result that is crucial to the proof of security of one-time pad over the group (G, \circ) .
 - (a) (7 points) Suppose $a, b \in G$. Let inv(a) and inv(b) be the inverses of a and b, respectively (i.e., $a \circ inv(a) = e$ and $b \circ inv(b) = e$). Prove that inv(a) = inv(b) if and only if a = b. Solution.

(b) (8 points) Suppose $m \in G$ is a message and $c \in G$ is a cipher text. Prove that there exists a unique $\mathsf{sk} \in G$ such that $m \circ \mathsf{sk} = c$. Solution. 4. Calculating Large Powers mod *p* (15 points). Recall that we learned the repeated squaring algorithm in class. Calculate the following using this concept

 $19^{2020} \pmod{101}$

(Remark: 101 is a prime number). Solution.

- 5. Practice with Fields (20 points). We shall work over the field $(\mathbb{Z}_5, +, \times)$.
 - (a) (5 points) Addition Table. The (i, j)-th entry in the table is i + j. Complete this table. You do not need to fill the black cells because the addition is commutative.

Table 1: Addition Table.

(b) (5 points) Multiplication Table. The (i, j)-th entry in the table is $i \times j$. Complete this table.

	0	1	2	3	4
0					
1					
2					
3					
4					

Table 2: Multiplication Table.

(c) (5 points) Additive and Multiplicative Inverses. Write the additive and multiplicative inverses in the table below.

	0	1	2	3	4
Additive Inverse					
Multiplicative Inverse					

Table 3: Additive and Multiplicative Inverses Table.

(d) (5 points) Division Table. The (i, j)-th entry in the table is i/j. Complete this table.

	1	2	3	4
0				
1				
2				
3				
4				

Table 4: Division Table.

- 6. Order of an Element in (\mathbb{Z}_p^*, \times) . (20 points) The order of an element x in the multiplicative group (\mathbb{Z}_p^*, \times) is the smallest positive integer h such that $x^h = 1 \mod p$. For example, the order of 2 in (\mathbb{Z}_5^*, \times) is 4, and the order of 4 in (\mathbb{Z}_5^*, \times) is 2.
 - (a) (5 points) What is the order of 4 in $(\mathbb{Z}_{11}^*, \times)$? Solution.

(b) (10 points) Let x be an element in (\mathbb{Z}_p^*, \times) such that $x^n = 1 \mod p$ for some positive integer n and let h be the order of x in (\mathbb{Z}_p^*, \times) . Prove that h divides n. Solution.

(c) (5 points) Let h be the order of x in (\mathbb{Z}_p^*, \times) . Prove that h divides (p-1). Solution. 7. Defining Multiplication over \mathbb{Z}_{27}^* (25 points). In the class, we had considered the group (\mathbb{Z}_{26} , +) to construct a one-time pad for one alphabet messages. A few students were interested in defining a group with 26 elements using a "multiplication"like operation. This problem shall assist you to define the (\mathbb{Z}_{27}^* , ×) group that has 26 elements.

The first attempt from class. Recall that in the class we had seen that the following is also a group.

$$(\mathbb{Z}_{27} \setminus \{0, 3, 6, 9, 12, 15, 18, 21, 24\}, \times),$$

where \times is integer multiplication mod 27. However, the set had only 18 elements.

In this problem, we shall define $(\mathbb{Z}_{27}^*, \times)$ in an alternate manner such that the set has 26 elements.

A new approach. Interpret \mathbb{Z}_{27}^* as the set of all triplets (a_0, a_1, a_2) such that $a_0, a_1, a_2 \in \mathbb{Z}_3$ and at least one of them is non-zero. Intuitively, you can think of the triplets as the ternary representation of the elements in \mathbb{Z}_{27}^* . We interpret the triplet (a_0, a_1, a_2) as the polynomial $a_0 + a_1 X + a_2 X^2$. So, every element in \mathbb{Z}_{27}^* has an associated non-zero polynomial of degree at most 2, and every non-zero polynomial of degree at most 2 has an element in \mathbb{Z}_{27}^* associated with it.

The multiplication (× operator) of the element (a_0, a_1, a_2) with the element (b_0, b_1, b_2) is defined as the element corresponding to the polynomial

$$(a_0 + a_1X + a_2X^2) \times (b_0 + b_1X + b_2X^2) \mod 2 + 2X + X^3$$

The multiplication (× operator) of the element (a_0, a_1, a_2) with the element (b_0, b_1, b_2) is defined as follows.

|Input (a_0, a_1, a_2) and (b_0, b_1, b_2) .

- (a) Define $A(X) := a_0 + a_1 X + a_2 X^2$ and $B(X) := b_0 + b_1 X + b_2 X^2$
- (b) Compute $C(X) := A(X) \times B(X)$ (interpret this step as "multiplication of polynomials with integer coefficients")
- (c) Compute $R(X) := C(X) \mod 2 + 2X + X^3$ (interpret this as step as taking a remainder where one treats both polynomials as polynomials with integer coefficients). Let $R(X) = r_0 + r_1 X + r_2 X^2$

(d) Return $(c_0, c_1, c_2) = (r_0 \mod 3, r_1 \mod 3, r_2 \mod 3)$

For example, the multiplication $(0,1,1) \times (1,1,2)$ is computed in the following way.

(a)
$$A(X) = X + X^2$$
 and $B(X) = 1 + X + 2X^2$.

- (b) $C(X) = X + 2X^2 + 3X^3 + 2X^4$.
- (c) $R(X) = -6 9X 2X^2$.
- (d) $(c_0, c_1, c_2) = (0, 0, 1).$

According to <u>this definition</u> of the \times operator, solve the following problems.

• (5 points) Evaluate (1,0,1) × (1,0,1) Solution.

(10 points) Note that e = (1,0,0) is a identity element. Find the inverse of (1,0,1).
Solution.

• (10 points) Assume that $(\mathbb{Z}_{27}^*, \times)$ is a group. Find the order of the element (1, 1, 0).

(Recall that, in a group (G, \circ) , the order of an element $x \in G$ is the smallest positive integer h such that $\overbrace{x \circ x \circ \cdots \circ x}^{h-\text{times}} = e$) Solution.

18

Collaborators :