Homework 1

1. Trapezoid Rule. In the lecture, we saw that if f is a concave upwards function then the following is true.

$$
\frac{f(x-1)+f(x)}{2} \geqslant \int_{x-1}^{x} f(t) \mathrm{d} t
$$

(a) (5 points) Prove that if f is a concave downwards function, we have

$$
\frac{f(x-1)+f(x)}{2} \leqslant \int_{x-1}^{x} f(t) \mathrm{d} t
$$

Solution.
(b) (10 points) Prove that, for a concave downwards function f, we have

$$
f(1)+f(2)+\cdots+f(n) \leqslant \frac{f(1)+f(n)}{2}+\int_{1}^{n} f(t) \mathrm{d} t
$$

Solution.

2. Tight Estimations. Provide meaningful upper-bounds and lower-bounds for the following expressions.
(a) (10 points) $S_{n}=\sum_{i=1}^{n} \ln i$, Solution.
(b) (10 points) $A_{n}=n$! Solution.
(c) (10 points) $B_{n}=\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$

Solution.
3. Understanding Joint Distribution. Recall that in the lectures we considered the joint distribution (\mathbb{T}, \mathbb{B}) over the sample space $\{1,2, \ldots, 10\} \times\{T, F\}$, where \mathbb{T} represents the time I wake up in the morning, and \mathbb{B} represents whether I have breakfast or not. The following table summarizes the joint probability distribution.

t	b	$\mathbb{P}[\mathbb{T}=t, \mathbb{B}=b]$
4	T	0.05
4	F	0.04
5	T	0
5	F	0.01
6	T	0.1
6	F	0.25
7	T	0.20
7	F	0.10
8	T	0.10
8	F	0.03
9	T	0.05
9	F	0.05
10	T	0
10	F	0.02

Calculate the following probabilities.
(a) (5 points) Calculate the probability that I wake up at 6 a.m. or earlier, but do not have breakfast. That is, calculate $\mathbb{P}[\mathbb{T} \leqslant 6, \mathbb{B}=F]$,
Solution.
(b) (5 points) Calculate the probability that I wake up at 6 a.m. or earlier. That is, calculate $\mathbb{P}[\mathbb{T} \leqslant 6]$,
Solution.
(c) (5 points) Calculate the probability that I skip breakfast conditioned on the fact that I woke up at 6 a.m. or earlier. That is, compute $\mathbb{P}[\mathbb{B}=F \mid \mathbb{T} \leqslant 6]$. Solution.
4. Random Walk. There is a frog sitting at the origin $(0,0)$ in the first quadrant of a two-dimensional Cartesian plane. The frog first jumps uniformly at random along the X-axis to some point ($\mathbb{X}, 0$), where $\mathbb{X} \in\{1,2,3,4,5,6\}$. Then, it jumps uniformly at random along the Y -axis to some point (\mathbb{X}, \mathbb{Y}), where $\mathbb{Y} \in\{1,2,3,4,5,6\}$. So (\mathbb{X}, \mathbb{Y}) represents the final position of the frog after these two jumps. Note that \mathbb{X} and \mathbb{Y} are two independent random variables that are uniformly distributed over their respective sample spaces.
(a) (5 points) What is the probability that the frog jumps more than 4 units along the Y-axis. That is, compute $\mathbb{P}[\mathbb{Y}>4]$.

Solution.

(b) (10 points) What is the probability that the final position of the frog is above the line $X+Y=6$. That is compute $\mathbb{P}[\mathbb{X}+\mathbb{Y}>6]$?
Solution.
(c) (10 points) What is the probability that the frog has jumped 2 units along Xaxis conditioned on the fact that its final position is above the line $X+Y=6$? That is, compute $\mathbb{P}[\mathbb{X}=2 \mid \mathbb{X}+\mathbb{Y}>6]$?
5. Coin Tossing Word Problem. We have three (independent) coins represented by random variables $\mathbb{C}_{1}, \mathbb{C}_{2}$, and \mathbb{C}_{3}.
(i) The first coin has $\mathbb{P}\left[\mathbb{C}_{1}=H\right]=\mathbb{P}\left[\mathbb{C}_{1}=T\right]=\frac{1}{2}$,
(ii) The second coin has $\mathbb{P}\left[\mathbb{C}_{2}=H\right]=\frac{3}{4}$ and $\mathbb{P}\left[\mathbb{C}_{2}=T\right]=\frac{1}{4}$, and
(iii) The third coin has $\mathbb{P}\left[\mathbb{C}_{3}=H\right]=\frac{1}{4}$ and $\mathbb{P}\left[\mathbb{C}_{3}=T\right]=\frac{3}{4}$.

Consider the following experiment.
(A) Toss the first coin. Let the outcome of the first coin-toss be ω_{1}.
(B) If $\omega_{1}=H$, then we toss the second coin twice. Otherwise, (i.e., if $\omega_{1}=T$) toss the third coin twice. Let the two outcomes of this step be represented by ω_{2} and ω_{3}.
(C) Output $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$.

Based on this experiment, compute the probabilities below.
(a) (5 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ are H (head)?
Solution.
(b) (5 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes are H, conditioned on the fact that the first outcome was T ?
Solution.
(c) (5 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes are different from the first outcome?

Solution.

