Lecture 24: RSA Encryption
Recall: RSA Assumption

- We pick two primes uniformly and independently at random $p, q \leftarrow \mathbb{P}_n$
- We define $N = p \cdot q$
- We shall work over the group (\mathbb{Z}_N^*, \times), where \mathbb{Z}_N^* is the set of all natural numbers $< N$ that are relatively prime to N, and \times is integer multiplication mod N
- We pick $y \leftarrow \mathbb{Z}_N^*$
- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_N^*, which is $(p - 1)(q - 1)$
- We pick any $e \in \mathbb{Z}_{\varphi(N)}^*$, that is, e is a natural number $< \varphi(N)$ and is relatively prime to $\varphi(N)$
- We give (n, N, e, y) to the adversary A as ask her to find the e-th root of y, i.e., find x such that $x^e = y$

RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve.
Recall: Properties

- The function \(x^e : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^* \) is a bijection for all \(e \) such that \(\gcd(e, \varphi(N)) = 1 \)

- Given \((n, N, e, y)\), where \(y \leftarrow \mathbb{Z}_N^* \), it is difficult for any computationally bounded adversary to compute the \(e \)-th root of \(y \), i.e., the element \(y^{1/e} \)

- But given \(d \) such that \(e \cdot d = 1 \mod \varphi(N) \), it is easy to compute \(y^{1/e} \), because \(y^d = y^{1/e} \)

Now, think how we can design a key-agreement scheme using these properties. Once the key-agreement protocol is ready, we can use a one-time pad to create an public-key encryption scheme.
Key-Agreement

First, Alice and Bob establish a key that is hidden from the adversary

Alice

- $p, q \leftarrow P_n$
- $N = p \cdot q$
- $r \leftarrow \mathbb{Z}_N^*$
- $y = r^e$

Bob

- $\text{pk} = (n, N, e)$
- Pick any $e \in \mathbb{Z}_{\phi(N)}^*$
- y
- $\tilde{r} = y^d$

Note that $r = \tilde{r}$ and is hidden from an adversary based on the RSA assumption
Using this key, Alice sends the encryption of $m \in \mathbb{Z}_N^*$ using the one-time pad encryption scheme.

$$c = m \cdot r$$

Since, we always have $r = \tilde{r}$, this encryption scheme always decrypts correctly. Note that $\text{inv}(\tilde{r})$ can be computed only by knowing $\varphi(N)$.
Putting the two together: RSA Encryption (First Attempt) I

Alice

Bob

\(p, q \leftarrow P_n \)

\(N = p \cdot q \)

\(r \leftarrow \mathbb{Z}_N^* \) \hspace{2cm} \text{pk} = (n, N, e) \hspace{2cm} \text{Pick any } e \in \mathbb{Z}_{\varphi(N)}^* \)

\(y = r^e \)

\(c = m \cdot r \)

\((y, c) \)

\(\tilde{r} = y^d \)

\(\tilde{m} = c \cdot \text{inv}(\tilde{r}) \)
We emphasize that this encryption scheme work only for $m \in \mathbb{Z}_N^*$. In particular, this works for all messages m that have a binary representation of length less than n-bits, because p and q are n-bit primes.

HOWEVER, THIS SCHEME IS INSECURE
Insecurity of the First Attempt

- Let us start with a simpler problem.

 Suppose I pick an integer x and give $y = x^3$ to you. Can you efficiently find the x?

- Running for for loop with $i \in \{0, \ldots, y\}$ and testing whether $i^3 = y$ or not is an inefficient solution.

- However, binary search on the domain $\{0, \ldots, y\}$ is an efficient algorithm.

- Then why does the RSA assumption that says “computing the e-th root is difficult if $\varphi(N)$ is unknown” hold? Answer: Because we are working over \mathbb{Z}_N^* and not \mathbb{Z}. “Wrapping around” due to the modulus operation while cubing kills the binary search approach.
Insecurity of the First Attempt

- However, if x is such that $x^e < N$ then the modulus operation does not take effect. So, if $x < N^{1/e}$ then we can find the e-th root of y!

- Now, let us try to attack the “first attempt” algorithm

- Recall that we have $c = m \cdot r$ and $y = r^e$. So, we have $c^e = m^e \cdot r^e$. Now, note that $c^e \cdot \text{inv}(y) = m^e \cdot r^e \cdot y^{-1} = m^e$.

- So, the adversary can compute $c^e \cdot \text{inv}(y)$ to obtain m^e. If $m < N^{1/e}$, then the adversary can use binary search to recover m.

- There is another problem! If Alice is encrypting and sending multiple messages $\{m_1, m_2, \ldots\}$, then the eavesdropper can recover $\{m_1^e, m_2^e, \ldots\}$. So, she can find which of these $\{m_1^e, m_2^e, \ldots\}$ are identical. In turn, she can find out the messages in $\{m_1, m_2, \ldots\}$ that are identical (because $x^e: \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^*$ is a bijection).

- How do we fix these attacks?
Our idea is to pad the message m with some randomness s. The new message $s||m$, with high probability, satisfies $(s||m)^e > N$ (that is, it wraps around).

How does it satisfy the second attack mentioned above (Think: Birthday bound)?

Let us write down the new encryption scheme for $m \in \{0, 1\}^{n/2}$

$$\text{Enc}_{n,N,e}(m):$$

1. Pick $r \leftarrow \mathbb{Z}_N^*$
2. Pick $s \leftarrow \{0, 1\}^{n/2}$
3. Compute $y = r^e$, and $c = (s||m) \cdot r$
4. Return (y, c)
Final Optimized RSA Encryption

- Note that masking with r is not helping at all! Let us call $s \| m$ as the payload. An adversary can obtain the “e-th power of the payload” by computing $c^e \cdot y^{-1}$.

- So, we can use the following optimized encryption algorithm instead:

\[
\text{Enc}_{n, N, e}(m):
\]

1. Pick $s \leftarrow \{0, 1\}^{n/2}$
2. Return $c = (s \| m)^e$
Looking Ahead: Implementing RSA

Let us summarize all the algorithms that we need to implement RSA algorithm

1. Generating \(n \)-bit primes to sample \(p \) and \(q \)
2. Generating \(e \) such that \(e \) is relatively prime to \(\varphi(N) \), where \(N = pq \)
3. Finding the trapdoor \(d \) such that \(e \cdot d = 1 \mod \varphi(N) \)