Lecture 16: Encrypting Long Messages
Earlier, we saw that the length of the secret-key in one-time pad has to be at least the length of the message being encrypted.

Our objective in this lecture is to use smaller secret-keys to encrypt longer messages (that is secure against computationally bounded adversaries).
Recall

- Suppose \(f : \{0, 1\}^{2n} \to \{0, 1\}^{2n} \) is a one-way permutation (OWP)
- Then, we had see that the function
 \(G : \{0, 1\}^{n} \times \{0, 1\}^{n} \to \{0, 1\}^{2n+1} \) defined by
 \[
 G(r, x) = (r, f(x), \langle r, x \rangle)
 \]
is a one-bit extension PRG
- Let us represent \(f^i(x) \) as a short-hand for \(\underbrace{f(\cdots f(f(x))\cdots)}_{i\text{-times}} \). \(f^0(x) \) shall represent \(x \).
- By iterating the construction, we observed that we can create a stream of pseudorandom bits by computing
 \[
 b_i(r, x) = \langle r, f^i(x) \rangle
 \]
 (Note that, if we already have \(f^i(x) \) stored, then we can efficiently compute \(f^{i+1}(x) \) from it)
- So, the idea is to encrypt long messages where the \(i \)-th bit of the message is masked with the bit \(b_i(r, x) \)
Without loss of generality, we assume that our objective is to encrypt a stream of bits \((m_0, m_1, \ldots)\)

- **Gen()**: Return \(\text{sk} = (r, x) \xleftarrow{} \{0, 1\}^{2n}\), where \(r, x \in \{0, 1\}^n\)
- Alice and Bob, respectively, shall store their state variables: \(\text{state}_A\) and \(\text{state}_B\). Initially, we have \(\text{state}_A = \text{state}_B = x\)
- **Enc\(_{\text{sk}, \text{state}_A}\)(\(m_i\))**: \(c_i = m_i \oplus \langle r, \text{state}_A \rangle\), and update \(\text{state}_A = f(\text{state}_A)\), where \(\text{sk} = (r, x)\)
- **Dec\(_{\text{sk}, \text{state}_B}\)(\(\tilde{c}_i\))**: \(\tilde{m}_i = \tilde{c}_i \oplus \langle r, \text{state}_B \rangle\), and update \(\text{state}_B = f(\text{state}_B)\), where \(\text{sk} = (r, x)\)

Note that the \(i\)-th bit is encrypted with \(b_i(r, x)\) and is also decrypted with \(b_i(r, x)\). So, the correctness holds. This correctness guarantee holds as long as the order of the encryptions and the decryptions remain identical.

Note that each bit \(b_i(r, x)\) is uniform and independent of all previous bits (for computationally bounded adversaries). So, the scheme is secure against all computationally bounded adversaries.