Lecture 07: Graph Representation
Objective

- We shall develop a new graph representation to argue security and correctness of cryptographic schemes.
- As a representative application of this notation, we shall analyze private-key Encryption schemes using graphs.
For simplicity of proof and clarity of the intuition, we shall consider the class of all private-key encryption algorithms with the following restrictions

1. The key-generation algorithm Gen outputs a secret key sampled uniformly at random from the set \mathcal{K}

2. The encryption algorithm $\text{Enc}_{sk}(m)$ is deterministic

I want to emphasize that with a bit of effort these restrictions can be removed
Suppose \((\text{Gen, Enc, Dec})\) is a private-key encryption scheme that satisfies the two restrictions we mentioned earlier. We construct the following bipartite graph:

- The left partite set is the set of all message \(M\).
- The right partite set is the set of all cipher-texts \(C\).
- Given a message \(m \in M\) and a cipher-text \(c \in C\), we add an edge \((m, c)\) labeled \(sk\), if we have \(c = \text{Enc}_{sk}(m)\).

This is the graph corresponding to the encryption scheme \((\text{Gen, Enc, Dec})\).

Intuition. The edge labeled \(sk\) witnesses the fact that the message \(m\) is encrypted to the cipher-text \(c\). Or, we write this as \(m \xrightarrow{sk} c\).

We emphasize that there might be more than one secret key that witnesses the fact that the message \(m\) is encrypted to the cipher-text \(c\). Let \(wt(m, c)\) represent the number of secret keys \(sk\) such that \(sk\) witnesses the fact that \(c\) is an encryption of \(m\).
Till now we have represented private-key encryption scheme as a triplet of algorithms \((\text{Gen}, \text{Enc}, \text{Dec})\).

Henceforth, we can equivalently express them as graphs.
Property One: Characterization of Correctness

Theorem

A private-key encryption scheme (Gen, Enc, Dec) is incorrect if and only if there are two distinct messages $m, m' \in M$, a secret key $sk \in K$, and a cipher-text $c \in C$ such that $m^{sk} \rightarrow c$ and $m'^{sk} \rightarrow c$.

- Note that if there are two message m, m' such that $m^{sk} \rightarrow c$ and $m'^{sk} \rightarrow c$ then Bob cannot distinguish whether Alice produced the cipher text c for the message m or m'. Hence, whatever decoding Bob performs, he is bound to be incorrect.

- For the other direction, suppose Bob is unable to decode the (sk, c) correctly. If there is a unique $m \in M$ such that $m^{sk} \rightarrow c$ then Bob can obviously decode correctly. So, there must be two different messages $m, m' \in K$ such that $m^{sk} \rightarrow c$ and $m'^{sk} \rightarrow c$.

Private-key Encryption
Theorem

A correct private-key encryption scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) has \(|C| \geq |M|\).

- Suppose not. That is, assume that we have a correct private-key encryption scheme with \(|C| < |M|\).
- Fix any secret key \(sk \in K\).
- Suppose \(M = \{m_1, m_2, \ldots, m_\alpha\}\). Consider the following maps:

\[
\begin{align*}
m_1 & \xrightarrow{sk} c_1 \\
m_2 & \xrightarrow{sk} c_2 \\
\vdots \\
m_\alpha & \xrightarrow{sk} c_\alpha
\end{align*}
\]
Note that these mappings exist because given any sk and \(m \) the encryption algorithm maps to a unique cipher-text.

- Since \(|C| < |M| \), by pigeon-hole principle there are two distinct messages \(m, m' \in M \) and a cipher text \(c \in C \) such that \(m \xrightarrow{sk} c \) and \(m' \xrightarrow{sk} c \)

- So the scheme is incorrect. Hence contradiction.
Theorem

A private-key encryption scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) is secure if and only if for any \(c\) and two distinct message \(m, m' \in \mathcal{M}\) we have
\[
\Pr[C = c | M = m] = \frac{\Pr[C = c | M = m']}{|K|}.
\]

For any \(m \in \mathcal{M}\) and \(c \in \mathcal{C}\), note that we have
\[
\Pr[C = c | M = m] = \frac{\Pr[C = c | M = m']}{|K|}.
\]

Exercise: Prove that the security definition we have studied is equivalent to saying the following

“For any two distinct messages \(m, m' \in \mathcal{M}\) and a cipher-text \(c \in \mathcal{C}\) we have: \(\Pr[C = c | M = m] = \Pr[C = c | M = m']\)”

Given this result, we can conclude that a scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) is secure if and only if
"For any two distinct messages $m, m' \in \mathcal{M}$ and a cipher-text $c \in \mathcal{C}$ we have: $\text{wt}(m, c) = \text{wt}(m', c)$”

- **Food for thought.** In a secure scheme, if there are $m \xrightarrow{sk} c$, then for all $m' \in \mathcal{M}$ there exists some sk' such that $m' \xrightarrow{sk'} c$

- **Food for thought.** The size of the set \mathcal{K} need not be divisible by the size of the set \mathcal{M}. However, if there is a message m and a cipher-text c such that $\text{wt}(m, c) = w$, then the number of secret keys $|\mathcal{K}| \geq w|\mathcal{M}|$. Why?
Theorem

A correct and secure private-key encryption scheme \((\text{Gen, Enc, Dec})\) has \(|K| \geq|M|\)

- Suppose not. That is, there is a correct and secure scheme with \(|K| < |M|\).
- Fix a cipher-text \(c \in C\) such that there exists \(m \in M\) and \(sk \in K\) such that \(m \xrightarrow{sk} c\). Intuitively, we are picking a cipher-text that has a positive probability. For example, we are not picking a cipher-text that is never actually produced.
- Let the message space be \(M = \{m_1, m_2, \ldots, m_\alpha\}\)
- Note that, for any \(m_i \in M\) there exists some \(sk_i\) such that \(m_i \xrightarrow{sk_i} c\) (This is a property of secure private-key encryption schemes that was left as an exercise in the previous slide)
Now, consider the mappings

\[
m_1 \xrightarrow{sk_1} c \\
m_2 \xrightarrow{sk_2} c \\
\vdots \\
m_\alpha \xrightarrow{sk_\alpha} c
\]

Since \(|K| < |M|\), by pigeon-hole principle, there exists two distinct messages \(m_i, m_j\) such that \(sk_i = sk_j\) in the above mappings.

This violates correctness. Hence contradiction.
Note that any correct private-key encryption scheme must have \(|C| \geq |M| \) (property two).

Note that any correct and secure private-key encryption scheme must have \(|K| \geq |M| \) (property four).

One-time pad is a correct and secure scheme that achieves \(|K| = |C| = |M| \).
Recall that Property four states that the “correctness and security” of a private-key encryption scheme implies that the size of the set of keys is greater-than-or-equal to the size of the set of messages. For any M, construct a correct but insecure private-key encryption scheme such that $|K| = 1!$. This result shall show the necessity of both correctness and security in that property.

Another natural question is: Can we provide such guarantees for private-key encryption schemes that are secure but incorrect? The answer is NO. Think of a private-key encryption scheme that is secure (but incorrect) and works for any message set M and has $|K| = |C| = 1!$